Cho hai đường tròn (O; R) và (O'; R') tiếp xúc ngoài tại A (R > R'). Vẽ các đường kính AOB, AO'C. Dây DE của đường tròn (O) vuông góc với BC tại trung điểm K của BC
a) Chứng minh rằng: tứ giác BDCE là hình thoi
b) Gọi I là giao điểm của OC và đường tròn (O'). Chứng minh ba điểm D, A, I thẳng hàng
c) Chứng minh rằng KI là tiếp tuyến của đường tròn (O')
Ta có: tại K nên K là trung điểm Tứ giác BDCE có hai dường chéo BC, DE vuông góc nhau tại trung điểm mỗi đường
là hình thoi
Ta có: (so le trong ) (1)
là đường kính (2)
Từ (1), (2) suy ra và có:
mà hai góc ở vị trí đối đỉnh và B, K, C thẳng hàng nên D, A, I thẳng hàng
vuông tại I có IK trung tuyến
Mà (cùng phụ
Lại có ( cân tại O') (5)
Từ (3), (4), (5)
Và là tiếp tuyến của (O')
Cho vuông tại A (AB < AC) nội tiếp đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng:
a) cân
b) cân
c) HA là tiếp tuyến của (O)
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại S. Kẻ tiếp tuyến chung ngoài AB, CD với A, C thuộc (O),
Chứng minh rằng
Chứng tỏ rằng hệ phương trình có 1 nghiệm duy nhất với m = 3. Tìm nghiệm đó.