Trong mặt phẳng tọa độ Oxy, cho đồ thị hàm số y = f(x) = x2
1) Tính f(−1); f(3).
2) Cho A(−1; 1), B(3; 9) nằm trên đồ thị hàm y = x2. Gọi M là điểm thay đổi trên đồ thị hàm số y = x2 và có hoành độ là m (−1 < m < 3). Tìm m để tam giác ABM có diện tích lớn nhất.
1) + f(−1)
Thay x = −1 vào y = x2, ta được: f(−1) = (−1)2 = 1.
+ f(3)
Thay x = 3 vào y = x2, ta được: f(3) = 32 = 9.
Vậy f( – 1) = 1 và f(3) = 9.
2) Kẻ AH, MK, BI lần lượt vuông góc với Ox tại H, M, I ta được hình vẽ sau:
Khi đó AH = |yA| = 1; OH = |xA| = |-1| = 1;
OK = |xM| = |m|; MK = |yM| = m2;
OI = |xB| = 3; BI = |yB| = 9.
Suy ra: HK = |m + 1|; KI = OI – OK = |3 – m|;
HI = OH + OI = 1 + 3 = 4.
Ta có: S∆ABM = SAHIB – SAHKM – SMKIB
Ta có: Tứ giác AHIB, AHKM, MKIB là những hình thang vuông nên:
SAHIB = (AH + BI). HI = (1 + 9).4 = 20 (đvdt).
SAMKH = (AH + MK). HK = (1 + |yM|).|xM + 1| = (1 + m2).|m + 1|
SMKIB = (MK + BI). KI = (m2 + 9). |3 – m|
Þ SABM = 20 − (1 + m2).|m + 1| − (m2 + 9). |3 – m|
Do −1 < m < 3 nên , ∀m Î (−1;3)
Khi đó: SABM = 20 − (1 + m2).(m + 1) − (m2 + 9). (3 – m)
= 20 − (m + 1 + m3 + m2) − (3m2 – m3 + 27 – 9m)
= 20 − (4m2 – 8m + 28)
Để diện tích của tam giác ABM đạt GTLN thì (4m2 – 8m + 28) đạt GTNN
Mà (4m2 – 8m + 28) = 4(m2 – 2m + 7) = 4(m2 – 2m + 1) + 24 = 4(m – 1)2 + 24 ≥ 24, ∀m
Dấu “=” xảy ra khi m = 1.
Vậy (4m2 – 8m + 28) đạt GTNN bằng 24 khi m = 1.
Vậy S∆ABM đạt GTLN bằng 8 khi m = 1.
Cho tam giác nhọn ABC nội tiếp đường tròn (O), các đường cao BD và CE của tam giác ABC cắt nhau tại H.
1) Tính .
2) Chứng minh AEHD là tứ giác nội tiếp.
3) Các đường thẳng BD và CE cắt đường tròn (O) theo thứ tự tại P và Q (P khác B, Q khác C). Chứng minh HB.HP = HC.HQ.
4) Chứng minh OA vuông góc DE.
) Giải hệ phương trình và phương trình sau:
a)
b) x2 + x – 2 = 0
2) Một mảnh đất hình chữ nhật có độ dài đường chéo là 13m và chiều dài lớn hơn chiều rộng 7m. Tính chiều dài và chiều rộng của mảnh đất đó.
Cho a, b, c là các số dương thỏa mãn (a + b + c)abc = 1. Tìm giá trị nhỏ nhất của biểu thức P = .
Trong mặt phẳng tọa độ Oxy, điểm nào dưới đây thuộc đồ thị hàm số y = x2?
Công thức nào sau đây là công thức tính diện tích hình tròn bán kính R?
Cho phương trình 4x4 + x2 – 5 = 0. Đặt x2 = t (t ≥ 0) thì phương trình đã cho trở thành phương trình nào trong các phương trình sau?
Cho tứ giác ABCD nội tiếp đường tròn, khẳng định nào sau đây là đúng?
Trong mặt phẳng tọa độ Oxy, tập hợp các điểm biểu diễn của phương trình 4x – 3y = −1 là đường thẳng nào sau đây?