Cho phương trình ẩn x: x2 + 2(m + 3)x + 2m – 11 = 0 (1)
a) Chứng tỏ phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị của m.
b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn hệ thức:
= 2.
a) x2 + 2(m + 3)x + 2m – 11 = 0 (a = 1, b = 2(m + 3), c = 2m – 11)
∆ = b2 – 4ac = [2(m + 3)]2 – 4.(2m – 11)
= 4m2 + 16m + 80 = m2 + 4m + 4 + 16
= (m + 2)2 + 16 > 0
Vì ∆ > 0 nên phương trình có 2 nghiệm phân biệt.
b) Theo định lý Vi-et, ta có:
S = x1 + x2 = = −2(m + 3);
P = x1x2 = = 2m – 11.
Ta có: = 2 Û
Û = 2
Û −2m – 6 = 2(2m – 11)
Û 6m – 16 = 2 Û m = .
Vậy để phương trình (1) có hai nghiệm thỏa mãn yêu cầu bài toán thì m = .
Cho điểm A nằm ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Gọi D là trung điểm của AB. Đường thẳng DC cắt đường tròn tại E (E khác C). Chứng minh:
a) Tứ giác ABOC nội tiếp.
b) DB2 = DE.DC
c)
Trong đợt dịch Covid-19, nhân viên y tế của một trường THCS đã mua một số hộp khẩu trang gồm 2 loại. Biết nếu mua 6 hộp loại thứ nhất và 3 hộp loại thứ hai thì hết 2 280 000 đồng; nếu mua 3 hộp loại thứ nhất và 7 hộp loại thứ hai thì hết 2 680 000 đồng. Tính giá tiền mỗi loại hộp khẩu trang.
a) Tính chiều cao của một hình trụ có bán kính đáy R = 7 cm và diện tích xung quanh bằng 112p cm2.
b) Tính độ dài cung 30° của một đường tròn có bán kính 5 dm.
Cho (P): y = x2 và (d): y = 4x – 3
a) Vẽ đồ thị (P).
b) Xác định tọa độ các giao điểm của (P) và (d) bằng phép tính.