Hai điểm dân cư nằm về hai phía của một con sông rộng. Người ta muốn xây cầu qua sông (vuông góc với bờ sông) và làm đường nối hai khu dân cư qua chiếc cầu. Phải đặt vị trí cầu ở đâu, để quãng đường giữa hai điểm dân cư là nhỏ nhất (hình vẽ)?
Giả sử nếu con sông rất đẹp, hẹp đến mức hai bờ sông a và b trùng nhau. Di chuyển điểm M, ta tìm được vị trí của M là giao điểm của bờ sông a và đoạn AB (Ta đã biết đây là bài toán quen thuộc: ngắn nhất khi M là giao điểm của a và đoạn thẳng AB).
Từ đó ta cần tìm cách đưa ví dụ 1 về bài toán này. Ta làm như sau:
Dựng hình bình hành : Ta có .
Vậy . Do AA' không đổi, nên nhỏ nhất khi N là giao điểm của A'B và bờ sông.
Cách dựng M, N:
- Dựng A' sao cho AMNA' là hình bình hành
- Dựng M sao cho NM vuông góc với bờ sông a .
- M, N là các vị trí cần tìm.
Cho điểm A1 cố định, đoạn C1D1 thuộc đường thẳng d có độ dài không đổi chuyển động trên đường thẳng này. Tìm vị trí của để chu vi tam giác bé nhất.
Cho hai điểm A, B cố định nằm cùng phía đối với đường thẳng d. Đoạn CD thuộc đường thẳng d có độ dài không đổi và chuyển động trên đoạn thẳng này. Tìm vị trí của CD để chu vi tứ giác ABCD nhỏ nhất.
Hai xóm A và B cách nhau hai nhánh sông. Tìm địa điểm bắc cầu CD trên nhánh sông đối diện hai với điểm A và địa điểm bắc cầu EG trên nhánh sông đối diện với điểm B sao cho tổng khoảng cách từ A đến C đến D đến E đến G rồi đến B là nhỏ nhất. Biết rằng góc tạo bởi hai nhánh sông là góc nhọn.
Hai điểm dân cư cách nhau ba con sông có lòng sông rộng khác nhau. Hãy bắc các cây cầu và làm đường nối hai điểm dân cư với con đường ngắn nhất (hình vẽ).