9 chia hết cho \[n{\rm{ }} + {\rm{ }}1\], nên \[n{\rm{ }} + {\rm{ }}1\]là ước của 9.
Suy ra \(n + 1 \in \left\{ { - 9; - 3; - 1;\,\,1;\,\,3;\,\,9} \right\}.\)
Với \(n + 1 = - 9\) suy ra \(n = - 9 - 1\) hay \(n = - 10\)
Với \(n + 1 = - 3\) suy ra \(n = - 3 - 1\) hay \(n = - 4\)
Với \(n + 1 = - 1\) suy ra \(n = - 1 - 1\) hay \(n = - 2\)
Với \(n + 1 = 1\) suy ra \(n = 1 - 1\) hay \(n = 0\)
Với \(n + 1 = 3\) suy ra \(n = 3 - 1\) hay \(n = 2\)
Với \(n + 1 = 9\) suy ra \(n = 9 - 1\) hay \(n = - 8\)
Vậy \(n \in \left\{ { - 10; - 4; - 2;\,\,0;\,\,2;\,\,8} \right\}.\)
Tìm các chữ số \({\rm{a}}\) và \({\rm{b}}\) sao cho \({\rm{n}} = \overline {{\rm{a53b}}} \) vừa là bội của 5, vừa là bội của 6