Cho tam giác ABC, D là một điểm trên cạnh BC. Gọi E và F theo thứ tự là điểm đối xứng của điểm D qua AB và AC.
a) Chứng minh AE = AF;
a) E đối xứng với D qua AB => AB là trung trực của ED => AE = AD.
F đối xứng với D qua AC => AC là trung trực của DE => AF = AD.
=> AE = AF.
Xét cân tại A, có AB là trung trực => AB đồng thời là phân giác của
=>
Xét cân tại A, có AC là trung trực => AC đồng thời là phân giác của
=>
=>
Cho tam giác ABC vuông tại A ( AB < AC), điểm D thuộc cạnh huyền BC. Vẽ điểm M và điểm N đối xứng với D lần lượt qua AB và AC. Chứng minh rằng:
a) M và N đối xứng qua A.
Cho hình bình hành ABCD. Vẽ E là điểm đối xứng của A qua B, F là điểm đối xứng của A qua D. Chứng minh rằng: E là điểm đối xứng của F qua C.