IMG-LOGO

Câu hỏi:

04/07/2024 111

Cho tam giác ABC vuông tại A, đường cao AH, đường trung tuyến AD. Vẽ HEAB,HFAC. Gọi M và N lần lượt là trung điểm của HB và HC.

a) Chứng minh rằng: EM // FN // AD

Trả lời:

verified Giải bởi Vietjack

Cho tam giác ABC vuông tại A, đường cao AH, đường trung tuyến AD. a) Chứng minh rằng: EM // FN // AD (ảnh 1)

a) Tứ giác AFHE có ba góc vuông nên là hình chữ nhật => OA = OF = OH = OE.

Xét ΔABC vuông tại A có AD là đường trung tuyến nên AD = DB = DC

ΔDAC cân A1^=C^.

Mặt khác, C^=A2^ (cùng phụ với B^);

A2^=E1^ (hai góc ở đáy của tam giác cân)

Suy ra A1^=E1^.

Gọi K là giao điểm của AD và EF.

Xét ΔAEF vuông tại A có E1^+F1^=90°A1^+F1^=90°K^=90°.

Do đó: ADEF,                                                                       (1)

Ta có:  ΔOEM=ΔOHMc.c.cOEM^=OHM^=90°EMEF.     (2)

Chứng minh tương tự, ta được: FNEF.                                             (3)

Từ (1), (2), (3) suy ra: EM // FN // AD (vì cùng vuông góc với EF).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A. Trên cạnh huyền BC lấy một điểm M. Vẽ MDAB,MEACAHBC. Tính số đo của góc DHE.

Xem đáp án » 04/01/2023 489

Câu 2:

Cho hình bình hành ABCD. Biết AD=12AC và BAC^=12DAC^. Chứng minh rằng hình bình hành ABCD là hình chữ nhật.

Xem đáp án » 04/01/2023 357

Câu 3:

Cho tam giác ABC vuông cân tại A, đường cao AD. Gọi M là một điểm bất kì trên cạnh BC. Vẽ MEAB,MFAC. Tính số đo các góc của tam giác DEF.

Xem đáp án » 04/01/2023 270

Câu 4:

Cho góc xOy có số đo bằng 30°. Điểm A cố định trên tia Ox sao cho OA = 2cm. Lấy điểm B bất kì trên tia Oy. Trên tia đối của tia BA lấy điểm C sao cho BC = 2BBA. Hỏi khi điểm B di động trên tia Oy thì điểm C di động trên đường nào?

Xem đáp án » 04/01/2023 247

Câu 5:

Cho hình chữ nhật ABCD, đường chéo AC = d. Trên các cạnh AB, BC, CD và DA lần lượt lấy các điểm M, N, P, Q. Tính giá trị nhỏ nhất của tổng: S=MN2+NP2+PQ2+QM2

Xem đáp án » 04/01/2023 246

Câu 6:

Cho hình chữ nhật ABCD, AB = 8, BC = 6. Điểm M nằm trong hình chữ nhật. Tìm giá trị nhỏ nhất của tổng: S=MA2+MB2+MC2+MD2.

Xem đáp án » 04/01/2023 242

Câu 7:

Cho hình chữ nhật ABCD, AB = 15, BC = 8. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm E, F, G, H. Tính giá trị nhỏ nhất của chu vi tứ giác EFGH.

Xem đáp án » 04/01/2023 164

Câu 8:

Cho tam giác đều ABC cạnh a. Trên các cạnh AB, AC lần lượt lấy các điểm D và E sao cho AD = CE. Tìm giá trị nhỏ nhất của độ dài DE.

Xem đáp án » 04/01/2023 158

Câu 9:

Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Trên cạnh AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BD. Chứng minh rằng tia HM là tia phân giác của góc AHC.

Xem đáp án » 04/01/2023 157

Câu 10:

Cho góc xOy có số đo bằng 45°. Điểm A cố định trên tia Ox sao cho OA=32cm. Lấy điểm B bất kì trên tia Oy. Gọi G là trọng tâm của tam giác OAB. Hỏi khi điểm B di động trên tia Oy thì điểm G di động trên đường nào?

Xem đáp án » 04/01/2023 150

Câu 11:

Cho tam giác ABC vuông tại A. Gọi O là một giao điểm bất kì trong tam giác. Vẽ ODAB,OEBCOFCA. Tìm giá trị nhỏ nhất của tổng: S=OD2+OE2+OF2

Xem đáp án » 04/01/2023 136

Câu 12:

b) Tam giác ABC phải có thêm điều kiện gì thì ba đường thẳng EM, FN, AD là ba đường thẳng song song cách đều.

Xem đáp án » 04/01/2023 114

Câu hỏi mới nhất

Xem thêm »
Xem thêm »