Cho phương trình . Định m để phương trình có 4 nghiệm phân biệt và tổng bình phương tất cả các nghiệm bằng 10
Đặt
Phương trình trở thành (1)
Phương trình có 4 nghiệm phân biệt Û (1) có 2 nghiệm phân biệt dương
(I)
Với điều kiện (I), (1) có 2 nghiệm phân biệt dương , .
Þ Phương trình đã cho có 4 nghiệm
;
Vậy ta có
Với , (I) thỏa mãn
Với , (I) không thỏa mãn.
Vậy là giá trị cần tìm.
Tỉm giá trị m để phương trình:
a) có 2 nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương.
Tìm m để phương trình ( x là ẩn số, m là tham số) có hai nghiệm , thỏa mãn
b) Tìm m để phương trình đã cho có hai nghiệm sao cho nghiệm này bằng ba lần nghiệm kia.
Cho phương trình (m là tham số). Tìm m để phương trình có hai nghiệm , thỏa mãn
Cho phương trình (x là ẩn số)
a) Tìm điều kiện của m để phương trình đã cho có hai nghiệm phân biệt.
c) Với điều kiện nào của m thì phương trình có hai nghiệm cùng dấu (trái dấu)
Cho phương trình:
a) Chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m.
Tìm tất cả các số tự nhiên m để phương trình (m là tham số) có nghiệm nguyên.
Tỉm giá trị m để phương trình:
b) có 2 nghiệm trái dấu và bằng nhau về giá trị tuyệt đối.