Cho hình vuông ABCD. Gọi M, N lần lượt là trung điểm của BC, CD và I là giao điểm của AN, DM. Chứng minh rằng:
a) ;a) Áp dụng định nghĩa và giả thiết vào hình vuông ABCD ta được:
(c-g-c)
.
Vì vuông ở D, nên . (1)
Thay vào đẳng thức (1) ta được .
Điều này chứng tỏ tam giác DIN vuông ở I hay .
Cho hình vuông ABCD. Trên tia đối của tia CB lấy điểm M, trên tia đối của tia DC lấy điểm N sao cho BM = DN. Vẽ hình bình hành MANF, gọi O là trung điểm của AF. Chứng minh rằng:
a) Tứ giác MANF là hình vuông.
Cho một hình vuông cạnh dài 1m. Vẽ hình vuông thứ hai nhận đường chéo của hình vuông đã cho làm cạnh. Tính độ dài đường chéo của hình vuông này.
Cho hình vuông ABCD cạnh a. Gọi E là một điểm nằm giữa C và D. Tia phân giác của góc DAE cắt CD ở F. Kẻ cắt BC ở K.
a) Tính độ dài AH.