Cho hình chữ nhật ABCD có ÂB = 2AD . Gọi E, F theo thứ tụ là trung điểm của AB, CD. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE.
a) Tứ giác ADFE là hình gì? Vì sao?
a) E, F lần lượt là trung điểm của AB, CD nên ta có EF // AD // BC , do đó dễ thấy ADFE là hình chữ nhật.
Mặt khác . Vậy ADFE là hình vuông.
Cho hình vuông ABCD. Lấy điểm M tùy ý trên cạnh BC. Từ M, vẽ một đường thẳng cắt cạnh CD tại K sao cho: . Chứng minh .
Cho tứ giác ABCD có và AD = BC . Gọi M, N, P, Q lần lượt là trung điểm của AB, AC, CD, BD. Chứng minh rằng tứ giác MNPQ là hình vuông.
Cho hình bình hành ABCD. Ở phía ngoài hình bình hành vẽ các hình vuông ADEF và ABGH. Gọi O là giao điểm các đường chéo của hình vuông ADEF. Chứng minh rằng.
a)Cho hình vuông ABCD. Gọi E, F lần lượt trên cạnh AB, AD sao cho AE = DF . Chứng minh rằng DE = CF và DECF
Cho hình chữ nhật ABCD (AD < AB < 2AD). Vẽ các tam giác vuông cân ABI , CDF , I và K nằm trong hình chữ nhật. Gọi E là giao điểm của AI và DK, F là giao điểm của BI và CK. Chứng minh rằng:
a) EF song song với CD.
Cho hình vuông ABCD . Trên cạnh AB, BC, CD, DA, lần lượt lấy các điểm E, F, G, H sao cho AE = BF = CG = DH . Chứng minh EFGH là hình vuông.
Cho hình vuông ABCD. Gọi M, N, P, Q theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA.
a) Chứng minh AN = DM và
Cho tam giác ABC cân tại A , các đường cao BD và CE cắt nhau tại H. Tia phân giác của góc ABD cắt EC và AC theo thứ tự tại M và P. Tia phân giác của góc ACE cắt DB và AB theo thứ tự tại Q và N. Chứng minh rằng:
a) .b) Chứng minh rằng các đoạn thẳng DM, AN, BP, CQ giao nhau tạo thành một hình vuông.