Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1: và d2: . Gọi (C) là đường tròn tiếp xúc với d1 tại điểm A có hoành độ dương, (C) cắt d2 tại hai điểm B, C sao cho tam giác ABC vuông tại B và có diện tích bằng . Phương trình của đường tròn (C) là:
A.
B.
C.
D.
Hướng dẫn giải
Đáp án đúng là: D
Vì A ∈ d1 nên
B, C ∈ d2 nên .
Suy ra
Đường thẳng d1: có vectơ pháp tuyến là nên có vectơ chỉ phương là .
Đường thẳng d2: có vectơ pháp tuyến là nên có vectơ chỉ phương là .
Ba điểm A, B, C đều nằm trên đường tròn mà tam giác ABC vuông tại B
Do đó AC là đường kính của đường tròn (C).
AC ⊥ d1
c – a – 3c – 3a = 0 Û 2a + c = 0 (1).
Lại có tam giác ABC vuông tại B nên AB ⊥ d2
b – a + 3b + 3a = 0 a + 2b = 0 (2).
Mặt khác
(do a > 0)
2a|c – b| = 1 (3)
Từ (1) và (2) suy ra 2(2a + c) – (a + 2b) = 2 Û 2c – 2b = –3a
Thay vào (2) ta được a.|–3a| = 1 Û 3a2 = 1 (do a > 0)
(do a > 0).
Khi đó
và
Đường tròn (C) có AC là đường kính nên nhận trung điểm của AC làm tâm và bán kính .
Vậy phương trình đường tròn cần tìm là
Phương trình tiếp tuyến đi qua điểm A(5; –2) của đường tròn (C): (x – 1)2 + (y + 2)2 = 8 là:
Cho phương trình x2 + y2 – 2(m + 1)x + 4y – 1 = 0 (1). Với giá trị nào của m thì (1) là phương trình đường tròn có bán kính nhỏ nhất?
Cho tiếp tuyến d của một đường tròn có phương trình: x – y = 0. Biết bán kính của đường tròn này bằng 2 và điểm O(0;0) thuộc đường tròn. Hỏi có bao nhiêu phương trình đường tròn tâm I có tiếp tuyến trên?
Cho đường tròn (C): (x + 1)2 + (y – 1)2 = 25 và điểm M(9; – 4). Gọi d là tiếp tuyến của (C), biết d đi qua M và không song song với các trục toạ độ. Khi đó khoảng cách từ điểm P(6; 5) đến d bằng: