Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

28/06/2024 76

Cho Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 1). Kí hiệu Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 2) là số cặp số Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 3)

 sao cho Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 4). Tìm Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 5)


A. +∞



B. -∞


C. Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 18)

Đáp án chính xác

D. Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 19)

Trả lời:

verified Giải bởi Vietjack

Chọn C.

Xét phương trình Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 6) (1).

Gọi Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 7) là một nghiệm nguyên dương của (1). Giả sử Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 8) là một nghiệm nguyên dương khác Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 9) của (1).

Ta có Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 10) suy ra Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 11) do đó tồn tại k nguyên dương sao cho Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 12). Do v là số nguyên dương nên Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 13) . (2)

Ta nhận thấy số nghiệm nguyên dương của phương trình (1) bằng số các số k nguyên dương cộng với 1. Do đó Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 14).

 Từ đó ta thu được bất đẳng thức sau: Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 15)

Từ đó suy ra : Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 16)

Từ đây áp dụng nguyên lý kẹp ta có ngay Cho a, b thuộc N*, (a, b) = 1; n thuộc {ab + 1, ab + 2, ...}. Kí hiệu rn là số cặp số (u,v) thuộc N* xN* sao cho n = au + bv. (ảnh 17).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính giới hạn: Tính giới hạn: lim [1/1.4 + 1/2.5 + ... + 1/n(n+3)] A. 11/18 B.2 C. 1 D. 3/2 Chọn A Cách 1: lim [1/1.4 + 1/2.5 + ... + 1/n(n+3)] (ảnh 1).

Xem đáp án » 05/01/2023 162

Câu 2:

Giá trị của Giá trị của D = lim (căn bậc hai n^2 + 2n - căn bậc ba n^3 + 2n^2) bằng: A. dương vô cùng B. âm vô cùng C. 1/3 D. 1 (ảnh 1) bằng:

Xem đáp án » 05/01/2023 144

Câu 3:

Giá trị của Giá trị của B = lim căn bậc hai n^2 + 2n / n - căn bậc hai 3n^2 + 1 bằng: A. + vô cùng  B. - vô cùng  C. 0 D. 1/ 1 - căn bậc hai 3 (ảnh 1) bằng:

Xem đáp án » 05/01/2023 136

Câu 4:

Giá trị của. Giá trị của K = lim (căn bậc ba n^3 + n^2 -1 - 3 căn bậc hai 4n^2 + n + 1 + 5n) bằng: A. dương vô cùng B. âm vô cùng C. -5/12 D. 1 (ảnh 1) bằng:

Xem đáp án » 05/01/2023 133

Câu 5:

Cho dãy số Cho dãy số (xn) xác định bởi x1 = 1/2, x n+1 = xn^2 + xn với n lớn hơn bằng 1 Đặt Sn = 1/x1 + 1 +1/x2 + 1 + ..... + 1/xn+1 Tính lim Sn (ảnh 1) xác định bởi Cho dãy số (xn) xác định bởi x1 = 1/2, x n+1 = xn^2 + xn với n lớn hơn bằng 1 Đặt Sn = 1/x1 + 1 +1/x2 + 1 + ..... + 1/xn+1 Tính lim Sn (ảnh 2)

Đặt Cho dãy số (xn) xác định bởi x1 = 1/2, x n+1 = xn^2 + xn với n lớn hơn bằng 1 Đặt Sn = 1/x1 + 1 +1/x2 + 1 + ..... + 1/xn+1 Tính lim Sn (ảnh 3). Tính Cho dãy số (xn) xác định bởi x1 = 1/2, x n+1 = xn^2 + xn với n lớn hơn bằng 1 Đặt Sn = 1/x1 + 1 +1/x2 + 1 + ..... + 1/xn+1 Tính lim Sn (ảnh 4)

Xem đáp án » 05/01/2023 121

Câu 6:

Cho dãy số Cho dãy số (un) được xác định bởi: u0 = 2011 un+1 = un + 1/un^2. Tìm lim un^3/n  A. dương vô cùng B. âm vô cùng (ảnh 1) được xác định bởi: Cho dãy số (un) được xác định bởi: u0 = 2011 un+1 = un + 1/un^2. Tìm lim un^3/n  A. dương vô cùng B. âm vô cùng (ảnh 2). Tìm Cho dãy số (un) được xác định bởi: u0 = 2011 un+1 = un + 1/un^2. Tìm lim un^3/n  A. dương vô cùng B. âm vô cùng (ảnh 3).

Xem đáp án » 05/01/2023 118

Câu 7:

Tính giới hạn của dãy số Tính giới hạn của dãy số un = (1-1/T1)(1-1/T2)... (1-1/Tn) trong đó Tn = n(n/+1)/2 A. dương vô cùng B. âm vô cùng C. 1/3 D. 1 (ảnh 1) trong đó Tính giới hạn của dãy số un = (1-1/T1)(1-1/T2)... (1-1/Tn) trong đó Tn = n(n/+1)/2 A. dương vô cùng B. âm vô cùng C. 1/3 D. 1 (ảnh 2)

Xem đáp án » 05/01/2023 114

Câu 8:

Tính giới hạn của dãy số Tính giới hạn của dãy số A = lim ak.n^k + ak-1.n^k-1 + .... + a1n + a0/ bp.n^p + bp-1.n^p-1 +...+ b1n + b0  với akbp khác 0 (ảnh 1) với Tính giới hạn của dãy số A = lim ak.n^k + ak-1.n^k-1 + .... + a1n + a0/ bp.n^p + bp-1.n^p-1 +...+ b1n + b0  với akbp khác 0 (ảnh 2).

Xem đáp án » 05/01/2023 113

Câu 9:

Tính giới hạn: Tính giới hạn: lim [1/1.3 + 1/3.5 + ... + 1/n(2n+1)] A. 1 B. 0 C. 2/3 D. 2 . Chọn B Đặt A = 1/1.3 + 1/3.5 + ... + 1/n(2n+1) (ảnh 1)

Xem đáp án » 05/01/2023 112

Câu 10:

Tìm giá trị đúng của Tìm giá trị đúng của S = căn bậc hai 2 (1 + 1/2 + 1/4 + 1/8 + ... + 1/2^n + ....) A. căn bậc hai 2+ 1 B. 2 C. 2 căn bậc hai 2 D. 1/2 (ảnh 1)

Xem đáp án » 05/01/2023 106

Câu 11:

Cho dãy số Cho dãy số un với un = (n-1) căn bậc hai 2n+ 2/n^4 + n^2 - 1 . Chọn kết quả đúng của un là: A. - vô cùng  B. 0 C. 1 D. + vô cùng  (ảnh 1) với Cho dãy số un với un = (n-1) căn bậc hai 2n+ 2/n^4 + n^2 - 1 . Chọn kết quả đúng của un là: A. - vô cùng  B. 0 C. 1 D. + vô cùng  (ảnh 2). Chọn kết quả đúng của Cho dãy số un với un = (n-1) căn bậc hai 2n+ 2/n^4 + n^2 - 1 . Chọn kết quả đúng của un là: A. - vô cùng  B. 0 C. 1 D. + vô cùng  (ảnh 3) là:

Xem đáp án » 05/01/2023 104

Câu 12:

Giá trị của Giá trị của H = lim n (căn bậc ba 8n^3 + n - căn bậc hai 4n^2 + 3) bằng: A. dương vô cùng B. âm vô cùng C. -2/3 D. 1 (ảnh 1) bằng:

Xem đáp án » 05/01/2023 100

Câu 13:

Giá trị của. Giá trị của F = lim (căn bậc hai n + 1 + n) bằng: A. dương vô cùng B. âm vô cùng C. 0 D. 1 (ảnh 1) bằng:

Xem đáp án » 05/01/2023 99

Câu 14:

lim căn bậc năm 200 - 3n^5 + 2n^2 bằng A. 0 B. 1 C. dương vô cùng D. âm vô cùng (ảnh 1) bằng:

Xem đáp án » 05/01/2023 99

Câu 15:

Tính giới hạn: Tính giới hạn: lim [(1-1/2^2)( 1-1/3^2) ... (1 - 1/n^2)] A. 1 B. 1/2 C. 1/4 D. 3/2 Chọn B.  Cách 1:  lim [(1-1/2^2)( 1-1/3^2) ... (1 - 1/n^2)] (ảnh 1).

Xem đáp án » 05/01/2023 98

Câu hỏi mới nhất

Xem thêm »
Xem thêm »