Cho hàm số \(y = 4x - \sqrt x \). Nghiệm của phương trình \(y' = 0\) là
Hướng dẫn giải:
Chọn C
\(y' = 4 - \frac{1}{{2\sqrt x }}\)
\(y' = 0 \Leftrightarrow 4 - \frac{1}{{2\sqrt x }} = 0 \Leftrightarrow 8\sqrt x - 1 = 0 \Leftrightarrow \sqrt x = \frac{1}{8} \Rightarrow x = \frac{1}{{64}}\).
Cho hàm số \(y = {x^3} - 3{x^2} - 9x - 5\). Phương trình \(y' = 0\) có nghiệm là:
Cho hàm số \(y = - 4{x^3} + 4x\). Để \(y' \ge 0\) thì \[x\]nhận các giá trị thuộc tập nào sau đây ?
Cho hàm số \[f\left( x \right) = k\sqrt[3]{x} + \sqrt x \]\[(k \in \mathbb{R})\]. Để \[f'\left( 1 \right) = \frac{3}{2}\] thì ta chọn:
Cho hàm số \(y = 3{x^3} + {x^2} + 1\). Để \(y' \le 0\) thì \(x\) nhận các giá trị thuộc tập nào sau đây