Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. Tìm giá trị nhỏ nhất của
Gọi , kẻ
thì ta có
kẻ . Khi đó
Suy ra
Tương tự gọi B1, C1 là các điểm tương tự như A1 thì ta có
Từ (1), (2), (3) ta có
Gọi H là trực tâm của tam giác ABC thì ta đã biết kết quả quen thuộc
nên
Mặt khác
Tương tự nên
Do đó do
Vậy minT = 2 khi
Cách 2. Đặt . Do A, B, C, M đồng phẳng nên tồn tại x, y, z sao cho
Ta có bình phương vô hướng ta được
Tương tự
Vì vậy
Vậy minT = 2
Trong mặt phẳng cho đường tròn đường kính cố định BC và M là điểm di động trên đường tròn này. Trên đường thẳng d vuông góc với tại B lấy một điểm A.
a) Khẳng định nào sau đây là đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, và
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, BC = , mặt bên SBC là tam giác vuông tại B, mặt bên SCD vuông tại D và SD = a
a) Tính SA.
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc. Kẻ
a) Khẳng định nào đúng nhất?
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh Gọi (P) là mặt phẳng đi qua A và vuông góc với BC. Thiết diện của hình chóp S.ABC được cắt bởi (P) có diện tích bằng?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, và SA = a . Gọi I, K lần lượt là trung điểm các cạnh AB và SC. Tính IK.