Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

24/06/2024 94

Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. Tìm giá trị nhỏ nhất của Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 1)

A. Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 26)

B. Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 27)

Đáp án chính xác

C. Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 28)

D. Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 29)

Trả lời:

verified Giải bởi Vietjack

Chọn B
Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 2)

Gọi Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 3), kẻ  Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 4)

thì ta có

Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 5)

kẻ Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 6). Khi đó

Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 7)

Suy ra Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 8)

Tương tự gọi B1, C1 là các điểm tương tự như A1 thì ta có

Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 9)

Từ (1), (2), (3) ta có Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 10)

Gọi H là trực tâm của tam giác ABC thì ta đã biết kết quả quen thuộc

Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 11) nên Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 12)

Mặt khác Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 13)

Tương tự Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 14) nên Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 15)

Do đó Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 16) do Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 17)

Vậy minT = 2 khi Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 18)

Cách 2. Đặt Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 19). Do A, B, C, M đồng phẳng nên tồn tại x, y, z sao cho Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 20)

Ta có Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 21) bình phương vô hướng ta được

 Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 22)

Tương tự Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 23)

Vì vậy Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 24)

Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. (ảnh 25) ( Theo Cauchy-Schwarz)

Vậy minT = 2

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABC có đáy ABC là tam giác đều, O là trung điểm của đường cao AH của tam giác ABC, SO vuông góc với đáy. Gọi I là điểm tùy ý trên OH (không trùng với O và H). mặt phẳng (P) qua I và vuông góc với OH. Thiết diện của (P) và hình chóp S.ABC là hình gì?

Xem đáp án » 05/01/2023 171

Câu 2:

Tam giác ABC có BC = 2a, đường cao AD=a2. Trên đường thẳng vuông góc với (ABC) tại A, lấy điểm S sao cho SA=a2. Gọi E, F lần lượt là trung điểm của SB và SC. Diện tích tam giác AEF bằng?

Xem đáp án » 05/01/2023 163

Câu 3:

Trong mặt phẳng α cho đường tròn đường kính cố định BC và M là điểm di động trên đường tròn này. Trên đường thẳng d vuông góc với α tại B lấy một điểm A.

a) Khẳng định nào sau đây là đúng?

Xem đáp án » 05/01/2023 160

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc mp ABCD và SA = a căn bậc hai 2. Giả sử tồn tại tiết diện của hình chóp với mặt phẳng   (ảnh 1)

 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc mp ABCD và SA = a căn bậc hai 2. Giả sử tồn tại tiết diện của hình chóp với mặt phẳng   (ảnh 2). Giả sử tồn tại tiết diện của hình chóp với mặt phẳng α đi qua A vuông góc với SC. Tính diện tích thiết diện.

Xem đáp án » 05/01/2023 156

Câu 5:

Cho tứ diện đều ABCD cạnh a = 12, gọi (P) là mặt phẳng qua B và vuông góc với AD. Thiết diện của (P) và hình chóp có diện tích bằng

Xem đáp án » 05/01/2023 155

Câu 6:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a và SA = SB = SC = b (a>b2). Gọi G là trọng tâm tam giác ABC. Xét mặt phẳng (P) đi qua A và vuông góc với SC tại điểm C1 nằm giữa S và C. Diện tích thiết diện của hình chóp khi cắt bởi mặt phẳng (P) là

Xem đáp án » 05/01/2023 153

Câu 7:

Cho tứ diện OABC có OA, OB, OC đôi một vuông góc. Kẻ OHABC

a) Khẳng định nào đúng nhất?

Xem đáp án » 05/01/2023 150

Câu 8:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, BC = 3, mặt bên SBC là tam giác vuông tại B, mặt bên SCD vuông tại D và SD = a5

a) Tính SA.

Xem đáp án » 05/01/2023 149

Câu 9:

e) Tìm vị trí của M để diện tích tam giác BHK lớn nhất.

Xem đáp án » 05/01/2023 147

Câu 10:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA(ABCD) và SA = a . Gọi I, K lần lượt là trung điểm các cạnh AB và SC. Tính IK.

Xem đáp án » 05/01/2023 142

Câu 11:

Cho hình chóp S.ABCD, với đáy ABCD là hình thang vuông tại A, đáy lớn AD = 8, BC = 6, SA vuông góc với mặt phẳng (ABCD), SA = 6. Gọi M là trung điểm AB. (P) là mặt phẳng qua M và vuông góc với AB. Thiết diện của (P) và hình chóp có diện tích bằng?

Xem đáp án » 05/01/2023 140

Câu 12:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh  2a,SAABC,SA=a32. Gọi (P) là mặt phẳng đi qua A và vuông góc với  BC. Thiết diện của hình chóp S.ABC được cắt bởi (P) có diện tích bằng?

Xem đáp án » 05/01/2023 139

Câu 13:

d) Tìm tập hợp các điểm M trong không gian sao cho d) Tìm tập hợp các điểm M trong không gian sao cho MA^2 + MB^2 + MC^2 = 3MO^2 (ảnh 1)

Xem đáp án » 05/01/2023 134

Câu 14:

Cho tứ diện đều ABCD cạnh a = 12, AP là đường cao của tam giác ACD. Mặt phẳng (P) qua B vuông góc với AP cắt mp(ACD) theo đoạn giao tuyến có độ dài bằng ?

Xem đáp án » 05/01/2023 127

Câu 15:

Cho hình chóp S.ABC có đáy ABC là tam giác đều, SAABC. Gọi (P) là mặt phẳng qua B và vuông góc với SC. Thiết diện của (P) và hình chóp S.ABC là:

Xem đáp án » 05/01/2023 114

Câu hỏi mới nhất

Xem thêm »
Xem thêm »