Cho hình chóp S.ABC có đáy là tam giác đều cạnh a và SA = SB = SC = b . Gọi G là trọng tâm tam giác ABC. Xét mặt phẳng (P) đi qua A và vuông góc với SC tại điểm I nằm giữa S và C. Diện tích thiết diện của hình chóp cắt bởi mặt phẳng (P) là:
Đáp án A.
Kẻ . Thiết diện là tam giác AIB. Ta có
Gọi J là trung điểm của AB. Dễ thấy tam giác AIB cân tại I, suy ra và
Do đó:
Trong không gian cho tam giác ABC. Tìm điểm M sao cho giá trị của biểu thức đạt giá trị nhỏ nhất.
Cho hình chóp S.ABC có đáy là tam giác vuông tại A và Hình chiếu vuông góc của S trên mặt phẳng (ABC) là trung điểm H của cạnh AB. Góc giữa hai mặt phẳng (SBC) và (ABC) bằng 30o. Tính khoảng cách từ trung điểm M của cạnh BC đến mặt phẳng (SAC)
Cho lăng trụ đứng ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a và . Gọi O, O' lần lượt là tâm của hai đáy, gọi S là trung điểm của OO'. Tính khoảng cách từ O tới mặt phẳng (SAB) biết OO' = 2a
Cho hình chóp đều S.ABC có cạnh đáy bằng a. Gọi O là tâm của đáy và Tính khoảng cách từ O tới SA