Hướng dẫn giải
Đáp án đúng là: B
Đường tròn (x – 1)2 + (y – 2)2 = 4 có tâm I(1; 2) và bán kính R = 2.
Do tiếp tuyến của đường tròn song song với đường thẳng x + 2y – 3 = 0 nên phương trình tiếp tuyến có dạng: x + 2y + c = 0 (c ≠ – 3).
Khoảng cách từ I đến phương trình tiếp tuyến d chính bằng bán kính đường tròn và bằng R = 2.
Hay d(I, d) = 2 \( \Leftrightarrow \frac{{\left| {1 + 2.2 + c} \right|}}{{\sqrt {{1^2} + {2^2}} }} = 2\)
\( \Rightarrow \left| {c + 5} \right| = 2\sqrt 5 \Leftrightarrow c = - 5 \pm 2\sqrt 5 \) (thỏa mãn c ≠ – 3)
Vậy có 2 phương trình tiếp tuyến thỏa mãn.
Trong mặt phẳng Oxy, cho đường tròn (C): x2 + y2 – 2x + 2y – 2 = 0.
a) Viết phương trình đường thẳng (∆) song song với (d): 4x – 3y + 3 = 0 và tiếp xúc với (C).
b) Viết phương trình đường thẳng (d) qua A(3; 2) và tiếp xúc với (C).