Hướng dẫn giải
Đáp án đúng là: C
Ta có:
\({\left( {xy + \frac{1}{y}} \right)^5}\)
\( = C_5^0{\left( {xy} \right)^5}{\left( {\frac{1}{y}} \right)^0} + C_5^1{\left( {xy} \right)^4}{\left( {\frac{1}{y}} \right)^1} + C_5^2{\left( {xy} \right)^3}{\left( {\frac{1}{y}} \right)^2}\)
\( + C_5^3{\left( {xy} \right)^2}{\left( {\frac{1}{y}} \right)^3} + C_5^4{\left( {xy} \right)^1}{\left( {\frac{1}{y}} \right)^4} + C_5^5{\left( {xy} \right)^0}{\left( {\frac{1}{y}} \right)^5}\)
\( = {x^5}{y^5} + 5{x^4}{y^4}.\frac{1}{y} + 10{x^3}{y^3}.\frac{1}{{{y^2}}} + 10{x^2}{y^2}.\frac{1}{{{y^3}}} + 5xy.\frac{1}{{{y^4}}} + \frac{1}{{{y^5}}}\)
\( = {x^5}{y^5} + 5{x^4}{y^3} + 10{x^3}y + 10{x^2}.\frac{1}{y} + 5x.\frac{1}{{{y^3}}} + \frac{1}{{{y^5}}}\)
Vậy số hạng chứa x3y trong khai triển \({\left( {xy + \frac{1}{y}} \right)^5}\) là 10x3y.
Hai hộp chứa các quả cầu. Hộp thứ nhất chứa 3 quả đen và 2 quả trắng, hộp thứ hai chứa 4 quả đen và 6 quả trắng.
a) Lấy ngẫu nhiên từ hộp thứ nhất 1 quả. Tính xác suất để lấy được 1 quả đen.
b) Lấy ngẫu nhiên từ mỗi hộp một quả. Tính xác suất để lấy được 2 quả cùng màu.