IMG-LOGO

Câu hỏi:

10/07/2024 57

Với hai số dương x, y thỏa mãn x+y=2. Tìm giá trị lớn nhất của biểu thức T=1+1x2+1x+12+1+1y2+1y+12+4x+1y+1

Trả lời:

verified Giải bởi Vietjack

Phương pháp:

Đánh giá và chọn ra bộ số thích hợp để chứng minh không tồn tại giá trị lớn nhất của T.

Cách giải:

Với a>0  ta có hệ thức:

1+1a1a+12=1+1a2+1a+12+2a2a+121aa+1=1+1a2+1a+12+2a2a+12a+2a+1=1+1a2+1a+12

Nên 1+1a2+1a+12=1+1a1a+1=1+1a1a+1

Khi đó: T=1+1x2+1x+12+1+1y2+1y+12+4x+1y+1=2+1x+1y

Ta sẽ chứng minh không tồn tại giá trị lớn nhất của T.

Giả sử M>0  là giá trị lớn nhất của T.

Khi đó nếu ta chọn 1x=M+1x=1M+10;1;y=21M+1>0 . Khi đó ta có x, y vừa chọn thỏa mãn là các số dương và x+y=2 .

Với bộ x, y vừa chọn ta có T=2+1x+1y>2+M+1

Vậy không tồn tại giá trị lớn nhất của T.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Rút gọn biểu thức: A=sin15o+cos15ocos15ocot75o

Xem đáp án » 25/06/2023 82

Câu 2:

Cho hai hàm số bậc nhất y=m+1x+2m  và y=2m+1x+3m

Tìm giá trị của m để đồ thị của hai hàm số đã cho là hai đường thẳng song song.

Xem đáp án » 25/06/2023 63

Câu 3:

Giải phương trình: 25x+5+4520x+45x+116=2754.

Xem đáp án » 25/06/2023 62

Câu 4:

Cho hai hàm số bậc nhất y=m+1x+2m  và y=2m+1x+3m

Tìm giá trị của m để giao điểm của hai đồ thị đã cho nằm trên trục hoành.

Xem đáp án » 25/06/2023 53

Câu 5:

Cho hai biểu thức P=22xx+22xx Q=1xx1x3x12 ; với x>1  x2,x3 .

Tìm x để P.Q0

Xem đáp án » 25/06/2023 52

Câu 6:

Cho hai biểu thức P=22xx+22xx Q=1xx1x3x12 ; với x>1  x2,x3 .

Chứng minh rằng Q+2=x.

Xem đáp án » 25/06/2023 45

Câu 7:

Cho nửa đường tròn (O;R) đường kính AB. Gọi C, D là hai điểm di chuyển trên cung tròn sao cho góc COD luôn bằng 90o  (C nằm giữa AD). Tiếp tuyến tại C, D cắt đường thẳng AB lần lượt tại F, G. Gọi E là giao điểm của FCGD.

Khi tứ giác FCDG là hình thang cân. Hãy tính tỉ số ABFG.

Xem đáp án » 25/06/2023 45

Câu 8:

Cho nửa đường tròn (O;R) đường kính AB. Gọi C, D là hai điểm di chuyển trên cung tròn sao cho góc COD luôn bằng 90o  (C nằm giữa AD). Tiếp tuyến tại C, D cắt đường thẳng AB lần lượt tại F, G. Gọi E là giao điểm của FCGD.

Chứng minh rằng FC.DG luôn là hằng số

Xem đáp án » 25/06/2023 44

Câu 9:

Cho nửa đường tròn (O;R) đường kính AB. Gọi C, D là hai điểm di chuyển trên cung tròn sao cho góc COD luôn bằng 90o  (C nằm giữa AD). Tiếp tuyến tại C, D cắt đường thẳng AB lần lượt tại F, G. Gọi E là giao điểm của FCGD.
Tìm vị trí của C, D sao cho tích AD.BC đạt giá trị lớn nhất.

Xem đáp án » 25/06/2023 43

Câu 10:

Cho nửa đường tròn (O;R) đường kính AB. Gọi C, D là hai điểm di chuyển trên cung tròn sao cho góc COD luôn bằng 90o  (C nằm giữa AD). Tiếp tuyến tại C, D cắt đường thẳng AB lần lượt tại F, G. Gọi E là giao điểm của FCGD.

Tính chu vi của tam giác ECD theo R.

Xem đáp án » 25/06/2023 41

Câu hỏi mới nhất

Xem thêm »
Xem thêm »