Cho hàm số \(y = {x^4} - 2{x^2} - 3\) có đồ thị như hình vẽ bên dưới. Với giá trị nào của tham số \(m\)thì phương trình \({x^4} - 2{x^2} - 3 = 2m - 4\) có hai nghiệm phân biệt?
Cho hình chóp \(S.ABCD\)đáy là hình bình hành. Gọi \(M,N\)lần lượt là trung điểm của \(SA,SC\). Mặt phẳng \((BMN)\)cắt \(SD\)tại \(P\). Tỉ số \(\frac{{{V_{S.BMPN}}}}{{{V_{S.ABCD}}}}\)bằng:
Tìm tất cả giá trị thực của tham số \(m\) để đường thẳng \(\left( d \right):y = mx - m - 1\) cắt đồ thị \(\left( C \right):y = {x^3} - 3{x^2} + 1\) tại 3 điểm \(A\), \(B\), \(C\) phân biệt (\(B\) thuộc đoạn \(AC\)), sao cho tam giác \(AOC\) cân tại \(O\) (với \(O\) là gốc toạ độ).
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = - {x^2} + 2x + 3,\,\forall x \in \mathbb{R}.\) Hàm số đã cho có bao nhiêu điểm cực trị?
Tìm tất cả các giá trị thực của tham số \[m\] để hàm số \[y = \frac{1}{3}{x^3} - \left( {2m - 1} \right){x^2} + \left( {{m^2} - m + 7} \right)x + m - 5\] có hai điểm cực trị là độ dài hai cạnh góc vuông của một tam giác vuông có cạnh huyền bằng \[\sqrt {74} \].
Cho hàm số \(y = f\left( x \right)\), hàm số \(y = f'\left( x \right)\)có đồ thị như hình vẽ. Hàm số \(g\left( x \right) = 2f\left( {\frac{{5\sin x - 1}}{2}} \right) + \frac{{{{\left( {5\sin x - 1} \right)}^2}}}{4} + 3\)có bao nhiêu điểm cực trị trên khoảng\(\left( {0\,;\,2\pi } \right)\)?
Cho hàm số \(y = \frac{{mx - 1}}{{2x + 1}}\) (với \(m\) là tham số) thỏa mãn điều kiện \(\mathop {\max y}\limits_{\left[ {1;2} \right]} = 3\). Khẳng định nào sau đây đúng?
Cho hàm số \[y = f\left( x \right)\]liên tục trên \[\mathbb{R}\] và có đạo hàm \[f'\left( x \right) = {\left( {x + 1} \right)^2}{\left( {x - 1} \right)^3}\left( {2 - x} \right)\]. Hàm số \[y = f\left( x \right)\] đồng biến trên khoảng nào dưới đây?