Lời giải
Chọn D
Phương trình \({x^4} - 2{x^2} - 3 = 2m - 4\) có hai nghiệm phân biệt khi chỉ khi đồ thị hàm số \(y = {x^4} - 2{x^2} - 3\) và đường thẳng \(y = 2m - 4\) cắt nhau tại hai điểm phân biệt.
Dựa vào đồ thị hàm số trên, yêu cầu bài toán thỏa mãn khi \(\left[ \begin{array}{l}2m - 4 = - 4\\2m - 4 > - 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 0\\m > \frac{1}{2}\end{array} \right.\).
Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu đạo hàm như sau:
Hàm số \(y = 3f\left( {x + 3} \right) - {x^3} + 12x\) nghịch biến trên khoảng nào sau đây?