Lời giải
Chọn D
Hàm số \(y = {x^3} - 3{x^2} + mx + 1\) có tập xác định \(D = \mathbb{R}\).
Hàm số đồng biến trên \(\mathbb{R}\) khi và chỉ khi \(y' = 3{x^2} - 6x + m \ge 0\) với mọi \(x \in \mathbb{R}\)
\[ \Leftrightarrow \left\{ \begin{array}{l}a = 3 > 0\\\Delta ' = 9 - 3m \le 0\end{array} \right. \Leftrightarrow m \ge 3\].