Thứ sáu, 21/02/2025
IMG-LOGO

Câu hỏi:

12/07/2024 64

Cho hàm số \(f\left( x \right)\) có đạo hàm là hàm số \(f'\left( x \right)\) trên \(\mathbb{R}\). Biết rằng hàm số \(y = f'\left( {x - 2} \right) + 2\) có đồ thị như hình vẽ bên dưới. Hàm số \(f\left( x \right)\) nghịch biến trên khoảng nào?

Media VietJack

A. \[\left( { - \infty ;2} \right)\].

B. \[\left( { - 1;1} \right)\].

Đáp án chính xác

C. \[\left( {\frac{3}{2};\frac{5}{2}} \right)\].

D. \[\left( {2; + \infty } \right)\].

Trả lời:

verified Giải bởi Vietjack

Lời giải

Chọn B

Media VietJack

Từ đồ thị hàm số \(y = f'\left( {x - 2} \right) + 2\) ta suy ra đồ thị hàm số \(y = f'\left( {x - 2} \right)\) (đường màu đỏ) bằng cách tịnh tiến xuống dưới \[2\] đơn vị.

Suy ra đồ thị hàm số \(y = f'\left( x \right)\) (đường màu xanh) bằng cách tịnh tiến đồ thị hàm số \(y = f'\left( {x - 2} \right)\) sang trái \(2\) đơn vị.

Do đó hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng \(\left( { - 1;1} \right)\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), \(SA = \frac{{a\sqrt 2 }}{2}\), tam giác \(SAC\) vuông tại \(S\) và nằm trong mặt phẳng vuông góc với \(\left( {ABCD} \right)\). Tính theo \(a\) thể tích \(V\) của khối chóp \(S.ABCD\).

Xem đáp án » 27/06/2023 104

Câu 2:

Cho hàm số \(y = a{x^4} + b{x^2} + c\). Biết rằng đồ thị hàm số có hai điểm cực trị là \(A\left( {0;\,2} \right)\)và \(B\left( {2;\, - 14} \right)\). Giá trị của \(f\left( 1 \right)\) bằng

Xem đáp án » 27/06/2023 103

Câu 3:

Cho hình lăng trụ đều \[ABC.A'B'C'\]có cạnh đáy bằng \[\frac{{2a\sqrt 3 }}{3}\]. Đường thẳng \[BC'\] tạo với mặt phẳng \[\left( {ACC'A'} \right)\] góc \[\alpha \] thỏa mãn \[\cot \alpha = 2\]. Thể tích khối lăng trụ \[ABC.A'B'C'\] bằng

Xem đáp án » 27/06/2023 96

Câu 4:

Cho tứ diện \(ABCD\) có \(AB = 3,AC = 4,AD = 6\), \(\widehat {BAC} = {60^o},\) \(\widehat {CAD} = {90^o},\) \(\widehat {BAD} = {120^o}\). Thể tích của khối tứ diện \(ABCD\) bằng

Xem đáp án » 27/06/2023 92

Câu 5:

Cho khối chóp tam giác \(S.ABC\)\(SA \bot \left( {ABC} \right)\), tam giác \(ABC\) có độ dài \(3\) cạnh là \(AB = 5a\); \(BC = 8a\); \(AC = 7a\), góc giữa \(SB\)\(\left( {ABC} \right)\)\(45^\circ \). Tính thể tích khối chóp \(S.ABC\).

Xem đáp án » 27/06/2023 88

Câu 6:

Cho khối lăng trụ đứng\(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(2a\)\[AA' = a\sqrt 3 \].Thể tích khối lăng trụ đã cho bằng

Xem đáp án » 27/06/2023 87

Câu 7:

Cho hàm số \(y = {x^3} + 3{x^2} - 9x + 1\). GTLN là \(M\) và GTNN là \(m\) của hàm số trên đoạn \(\left[ {0;\,4} \right]\) là

Xem đáp án » 27/06/2023 86

Câu 8:

Có thể chia khối lập phương thành bao nhiêu khối tứ diện bằng nhau có các đỉnh là đỉnh của hình lập phương?

Xem đáp án » 27/06/2023 85

Câu 9:

Một người thợ thủ công làm mô hình đèn lồng bát diện đều, mỗi cạnh của bát diện đó được làm từ các que tre có độ dài \(8\,{\rm{cm}}\). Hỏi người đó cần bao nhiêu mét que tre để làm \(100\) cái đèn (giả sử mối nối giữa các que tre có độ dài không đáng kể)?

Xem đáp án » 27/06/2023 82

Câu 10:

Tìm tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số \(\left( C \right):y = {x^3} - m{x^2} + 2mx - m\) cắt đường thẳng \(y = 2 - x\) tại ba điểm phân biệt có hoành độ dương.

Xem đáp án » 27/06/2023 81

Câu 11:

Cho hình chóp tứ giác \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a\], cạnh bên \[SA\] vuông góc với mặt phẳng đáy và \[SA = a\sqrt 2 \]. Tính thể tích \[V\] của khối chóp \[S.ABCD\].

Xem đáp án » 27/06/2023 80

Câu 12:

Đồ thị hàm số \[{y^{}} = {x^3} - (3m + 1){x^2} + ({m^2} + 3m + 2)x + 3\] có điểm cực đại và điểm cực tiểu nằm về hai phía của trục tung khi

Xem đáp án » 27/06/2023 79

Câu 13:

Hình vẽ bên là đồ thị của hàm số \(y = \frac{{ax + b}}{{cx + d}}.\) Mệnh đề nào sau đây là đúng?
Media VietJack

Xem đáp án » 27/06/2023 74

Câu 14:

Cho hình thang cân \(ABCD\) có đáy nhỏ \(AB\) và hai cạnh bên đều có độ dài bằng 1. Tìm diện tích lớn nhất \({S_{{\rm{max}}}}\) của hình thang.

Xem đáp án » 27/06/2023 71

Câu 15:

Tìm giá trị thực của tham số \[m\]để hàm số \[y = \frac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - 4} \right)x + 3\]đạt cực đại tại\[x = 3\].

Xem đáp án » 27/06/2023 70

Câu hỏi mới nhất

Xem thêm »
Xem thêm »