Cho hình chóp S.ABC có tam giác ABC đều cạnh \(a = 3cm,\,\,SA \bot \left( {ABC} \right)\) và \(SA = 2a\). Tính thể tích khối cầu ngoại tiếp hình chóp \(S.ABC\)
D. \(16\pi \sqrt 3 \,c{m^3}\)
Đáp án C
+) Xác định trục mặt đáy (đường thẳng đi qua tâm đáy và vuông góc với đáy).
+) Xác định trục của cạnh bên SA.
+) Xác định giao điểm của hai trục trên, đó chính là tâm mặt cầu ngoại tiếp khối chóp.
Cách giải:
Gọi M, N, I lần lượt là trung điểm của AB, BC, SA; G là trọng tâm tâm giác ABC
Mà tam giác ABC đều \( \Rightarrow \) G là tâm đường tròn ngoại tiếp tam giác ABC
Trong (SAN), dựng đường thẳng qua G song song SA, đường thẳng qua I song song AN, chúng cắt nhau tại O
Khi đó, \(OA = OB = OC = OS\) hay O là tâm mặt cầu ngoại tiếp hình chóp S.ABC
I là trung điểm của SA \( \Rightarrow IA = \frac{{SA}}{2} = \frac{{2a}}{2} = a = 3\left( {cm} \right)\)
Tam giác đều cạnh ABC \(a = 3cm \Rightarrow AN = \frac{{a\sqrt 3 }}{2} \Rightarrow AG = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3} = \frac{{3.\sqrt 3 }}{3} = \sqrt 3 \left( {cm} \right)\)
Tứ giác AGOI có: \(OG//AI,\,\,\,OI//AG \Rightarrow \) AGOI là hình bình hành
Mà \(A = {90^0} \Rightarrow \) AGOI là hình chữ nhật \( \Rightarrow OA = \sqrt {A{I^2} + A{G^2}} = \sqrt {{3^2} + {{\left( {\sqrt 3 } \right)}^2}} = 2\sqrt 3 \left( {cm} \right)\)
\( \Rightarrow \) Bán kính mặt cầu ngoại tiếp hình chóp S.ABC là: \(R = 2\sqrt 3 \left( {cm} \right)\)
\( \Rightarrow \) Thể tích khối cầu ngoại tiếp hình chóp S.ABC là: \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi .{\left( {2\sqrt 3 } \right)^3} = 32\sqrt 3 \pi \left( {c{m^3}} \right)\)
Giả sử A và B là các giao điểm của đường cong \(y = {x^3} - 3x + 2\) và trục hoành. Tính độ dài đoạn thẳng AB:
Cho hình chóp S.ABC có \(SA = a,\,\,SB = b,\,\,SC = c\) và \(ASB = BSC = CSA = {60^0}\). Tính thể tích của khối chóp S.ABC.
Giá trị nhỏ nhất của số thực m để hàm số \(y = \frac{1}{3}{x^3} + m{x^2} - mx - m\) đồng biến trên \(\mathbb{R}\) là:
Cho khối chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\); tam giác ABC vuông tại A, biết \(BC = 3a;\,\,\,AB = a\). Góc giữa mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng \({45^0}\). Tính thể tích khối chóp S.ABC theo a.
Cho bất phương trình \({\log _{\frac{1}{5}}}f\left( x \right) > {\log _{\frac{1}{5}}}g\left( x \right)\). Khi đó, bất phương trình tương đương:
Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{{mx - 1}}{{2x + m}}\) trên đoạn \(\left[ {3;5} \right]\) bằng 2 khi và chỉ khi:
Điều kiện cần và đủ của tham số m để hàm số \(y = {x^3} - {x^2} + mx - 5\) có cực trị là:
Gọi \({y_1},\,{y_2}\) lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số \(y = - {x^4} + 10{x^2} - 9\) . Khi đó, \(\left| {{y_1} - {y_2}} \right|\) bằng:
Cho hàm số \(y = {x^3} - 2m{x^2} + 1\) có đồ thị \(\left( {{C_m}} \right)\). Tìm m sao cho \(\left( {{C_m}} \right)\) cắt đường thẳng \(d:y = x + 1\) tại ba điểm phân biệt có hoành độ \({x_1},\,{x_2},\,{x_3}\) thỏa mãn \({x_1} + {x_2} + {x_3} = 101\)
Phương trình \({3^{2x + 1}} - {4.3^x} \({x_1},\,{x_2}\) trong đó \({x_1} < {x_2}\), chọn phát biểu đúng.
Giải bất phương trình \({\log _{\frac{1}{5}}}\left( {5x - 3} \right) > - 2\), có nghiệm là: