Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

30/06/2024 47

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, \(SA \bot \left( {ABC} \right)\), góc giữa đường thẳng SB và mặt phẳng \(\left( {ABC} \right)\) bằng \({60^0}\). Khoảng cách giữa hai đường thẳng AC và SB bằng:

A. \(\frac{{a\sqrt 2 }}{2}\)

B. 2a

C. \(\frac{{a\sqrt {15} }}{5}\)

Đáp án chính xác


D. \(R = \frac{{a\sqrt 7 }}{7}\)


Trả lời:

verified Giải bởi Vietjack

Đáp án C

Phương pháp :

+) Xác định góc giữa SB và mặt đáy. Góc giữa đường thẳng và mặt phẳng là góc tạo bởi đường thẳng và hình chiếu của đường thẳng trên mặt phẳng đó.

+) Dựng mặt phẳng (SBK) chứa SB và song song với AC, khi đó

\(d\left[ {AC;SB} \right] = d\left[ {AC;\left( {SBK} \right)} \right] = \left[ {A;\left( {SBK} \right)} \right] = AH\)

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc (ABC), góc giữa đường (ảnh 1)

+) Sử dụng hệ thức lượng trong tam giác vuông tính AH.

Cách giải:

\(SA \bot \left( {ABC} \right) \Rightarrow \) AB là hình chiếu vuông góc của SB lên \(\left( {ABC} \right)\)

\( \Rightarrow \left( {SB;\left( {ABC} \right)} \right) = \left( {SB;AB} \right) = SBA = {60^0}\)

\( \Rightarrow SA = AB.\tan {60^0} = a\sqrt 3 \)

Dựng d qua B và d // AC

Dựng \(AK \bot d\) tại K

Dựng \(AH \bot SK\) tại H

Ta có \(\left\{ \begin{array}{l}BK \bot AK\\BK \bot SA\end{array} \right. \Rightarrow BK \bot \left( {SAK} \right) \Rightarrow BK \bot AH\)

\(\left\{ \begin{array}{l}BK \bot AH\\SK \bot AH\end{array} \right. \Rightarrow AH \bot \left( {SBK} \right) \Rightarrow d\left( {A;\left( {SBK} \right)} \right) = AH\)

\(\left\{ \begin{array}{l}BK//AC\\BK \subset \left( {SBK} \right)\\AC \not\subset \left( {SBK} \right)\end{array} \right. \Rightarrow AC//\left( {SBK} \right) \Rightarrow d\left[ {AC;SB} \right] = d\left[ {A;\left( {SBK} \right)} \right] = AH\)

Gọi M là trung điểm AC \( \Rightarrow BM \bot AC & \left( 1 \right)\)

\(\left\{ \begin{array}{l}BK \bot AK\\BK \bot AC\end{array} \right. \Rightarrow AK \bot AC & \left( 2 \right)\)

\(\left( 1 \right),\left( 2 \right) \Rightarrow AK//BM \Rightarrow \) AKBM là hình bình hành \( \Rightarrow AK = BM = \frac{{a\sqrt 3 }}{2}\)

Xét tam giác SAK vuông tại A ta có: \(\frac{1}{{A{H^2}}} = \frac{1}{{A{K^2}}} + \frac{1}{{S{A^2}}} = \frac{5}{{3{a^2}}} \Rightarrow AH = \frac{{a\sqrt {15} }}{5}\)

Vậy \(d\left( {AC;SB} \right) = \frac{{a\sqrt {15} }}{5}\)

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm là hàm số liên tục trên R với đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Biết \(f\left( a \right) > 0\), hỏi đồ thị hàm số \(y = f\left( x \right)\) cắt trục hoành tại nhiều nhất bao nhiêu điểm?

Cho hàm số y = f(x) có đạo hàm là hàm số liên tục trên R với đồ thị hàm số y = f'(x) như hình (ảnh 1)

Xem đáp án » 28/06/2023 618

Câu 2:

Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y = \left( {1 - m} \right){x^4} + 2\left( {m + 3} \right){x^2} + 1\) có đúng một điểm cực tiểu và không có điểm cực đại?

Xem đáp án » 28/06/2023 98

Câu 3:

Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 1\) trên đoạn \(\left[ {0;4} \right]\). Ta có \(m + 2M\) bằng:

Xem đáp án » 28/06/2023 85

Câu 4:

Hàm số \(y = \frac{1}{3}{x^3} - 2{x^2} + 3x - 1\) nghịch biến trên khoảng nào trong các khoảng sau đây?

Xem đáp án » 28/06/2023 84

Câu 5:

Rút gọn biểu thức \(A = {a^{4{{\log }_{{a^2}}}3}}\) với \(0 < a \ne 1\) ta được kết quả là

Xem đáp án » 28/06/2023 78

Câu 6:

Khoảng cách giữa hai điểm cực trị của đồ thị hàm số \(y = {x^3} + 3{x^2} - 4\)

Xem đáp án » 28/06/2023 73

Câu 7:

Số điểm chung của đồ thị hàm số \(y = {x^3} - 2{x^2} + x - 12\) với trục là Ox

Xem đáp án » 28/06/2023 66

Câu 8:

Đồ thị hàm số \(y = \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}}\) có tất cả bao nhiêu tiệm cận đứng?

Xem đáp án » 28/06/2023 62

Câu 9:

Rút gọn biểu thức \(A = \frac{{\sqrt[3]{{{a^5}}}.{a^{\frac{7}{3}}}}}{{{a^4}.\sqrt[7]{{{a^{ - 2}}}}}}\) với \(a > 0\) ta được kết quả \(A = {a^{\frac{m}{n}}}\), trong đó \(m,\,n \in \mathbb{N}*\)\(\frac{m}{n}\) là phân số tối giản. Khẳng định nào sau đây đúng?

Xem đáp án » 28/06/2023 60

Câu 10:

Cho \(0 < a \ne 1\)\(b \in R\). Chọn mệnh đề sai trong các mệnh đề sau:

Xem đáp án » 28/06/2023 60

Câu 11:

Gọi \({m_0}\) là giá trị thực của tham số để đồ thị hàm số \(y = {x^4} + 2m{x^2} + 4\) có 3 điểm cực trị nằm trên các trục tọa độ. Khẳng định nào sau đây là đúng?

Xem đáp án » 28/06/2023 59

Câu 12:

Giá trị lớn nhất của hàm số \(y = {x^3} - 3x + 5\) trên đoạn \(\left[ {0;\frac{3}{2}} \right]\)

Xem đáp án » 28/06/2023 58

Câu 13:

Tìm tất cả các giá trị thực của x thỏa mãn đẳng thức \({\log _3}x = 3{\log _3}2 + {\log _9}25 - {\log _{\sqrt 3 }}3\)

Xem đáp án » 28/06/2023 58

Câu 14:

Thể tích của khối cầu bán kính R bằng:

Xem đáp án » 28/06/2023 57

Câu 15:

Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Biết \(OA = a,\,\,OB = 2a\) , và đường thẳng AC tạo với mặt phẳng \(\left( {OBC} \right)\) một góc \({60^0}\). Thể tích khối tứ diện OABC bằng

Xem đáp án » 28/06/2023 57

Câu hỏi mới nhất

Xem thêm »
Xem thêm »