Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, \(SA \bot \left( {ABC} \right)\), góc giữa đường thẳng SB và mặt phẳng \(\left( {ABC} \right)\) bằng \({60^0}\). Khoảng cách giữa hai đường thẳng AC và SB bằng:
D. \(R = \frac{{a\sqrt 7 }}{7}\)
Đáp án C
Phương pháp :
+) Xác định góc giữa SB và mặt đáy. Góc giữa đường thẳng và mặt phẳng là góc tạo bởi đường thẳng và hình chiếu của đường thẳng trên mặt phẳng đó.
+) Dựng mặt phẳng (SBK) chứa SB và song song với AC, khi đó
\(d\left[ {AC;SB} \right] = d\left[ {AC;\left( {SBK} \right)} \right] = \left[ {A;\left( {SBK} \right)} \right] = AH\)
+) Sử dụng hệ thức lượng trong tam giác vuông tính AH.
Cách giải:
\(SA \bot \left( {ABC} \right) \Rightarrow \) AB là hình chiếu vuông góc của SB lên \(\left( {ABC} \right)\)
\( \Rightarrow \left( {SB;\left( {ABC} \right)} \right) = \left( {SB;AB} \right) = SBA = {60^0}\)
\( \Rightarrow SA = AB.\tan {60^0} = a\sqrt 3 \)
Dựng d qua B và d // AC
Dựng \(AK \bot d\) tại K
Dựng \(AH \bot SK\) tại H
Ta có \(\left\{ \begin{array}{l}BK \bot AK\\BK \bot SA\end{array} \right. \Rightarrow BK \bot \left( {SAK} \right) \Rightarrow BK \bot AH\)
\(\left\{ \begin{array}{l}BK \bot AH\\SK \bot AH\end{array} \right. \Rightarrow AH \bot \left( {SBK} \right) \Rightarrow d\left( {A;\left( {SBK} \right)} \right) = AH\)
\(\left\{ \begin{array}{l}BK//AC\\BK \subset \left( {SBK} \right)\\AC \not\subset \left( {SBK} \right)\end{array} \right. \Rightarrow AC//\left( {SBK} \right) \Rightarrow d\left[ {AC;SB} \right] = d\left[ {A;\left( {SBK} \right)} \right] = AH\)
Gọi M là trung điểm AC \( \Rightarrow BM \bot AC & \left( 1 \right)\)
\(\left\{ \begin{array}{l}BK \bot AK\\BK \bot AC\end{array} \right. \Rightarrow AK \bot AC & \left( 2 \right)\)
\(\left( 1 \right),\left( 2 \right) \Rightarrow AK//BM \Rightarrow \) AKBM là hình bình hành \( \Rightarrow AK = BM = \frac{{a\sqrt 3 }}{2}\)
Xét tam giác SAK vuông tại A ta có: \(\frac{1}{{A{H^2}}} = \frac{1}{{A{K^2}}} + \frac{1}{{S{A^2}}} = \frac{5}{{3{a^2}}} \Rightarrow AH = \frac{{a\sqrt {15} }}{5}\)
Vậy \(d\left( {AC;SB} \right) = \frac{{a\sqrt {15} }}{5}\)
Cho hàm số \(y = f\left( x \right)\) có đạo hàm là hàm số liên tục trên R với đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Biết \(f\left( a \right) > 0\), hỏi đồ thị hàm số \(y = f\left( x \right)\) cắt trục hoành tại nhiều nhất bao nhiêu điểm?
Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y = \left( {1 - m} \right){x^4} + 2\left( {m + 3} \right){x^2} + 1\) có đúng một điểm cực tiểu và không có điểm cực đại?
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 1\) trên đoạn \(\left[ {0;4} \right]\). Ta có \(m + 2M\) bằng:
Hàm số \(y = \frac{1}{3}{x^3} - 2{x^2} + 3x - 1\) nghịch biến trên khoảng nào trong các khoảng sau đây?
Rút gọn biểu thức \(A = {a^{4{{\log }_{{a^2}}}3}}\) với \(0 < a \ne 1\) ta được kết quả là
Khoảng cách giữa hai điểm cực trị của đồ thị hàm số \(y = {x^3} + 3{x^2} - 4\) là
Số điểm chung của đồ thị hàm số \(y = {x^3} - 2{x^2} + x - 12\) với trục là Ox
Đồ thị hàm số \(y = \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}}\) có tất cả bao nhiêu tiệm cận đứng?
Rút gọn biểu thức \(A = \frac{{\sqrt[3]{{{a^5}}}.{a^{\frac{7}{3}}}}}{{{a^4}.\sqrt[7]{{{a^{ - 2}}}}}}\) với \(a > 0\) ta được kết quả \(A = {a^{\frac{m}{n}}}\), trong đó \(m,\,n \in \mathbb{N}*\) và \(\frac{m}{n}\) là phân số tối giản. Khẳng định nào sau đây đúng?
Cho \(0 < a \ne 1\) và \(b \in R\). Chọn mệnh đề sai trong các mệnh đề sau:
Gọi \({m_0}\) là giá trị thực của tham số để đồ thị hàm số \(y = {x^4} + 2m{x^2} + 4\) có 3 điểm cực trị nằm trên các trục tọa độ. Khẳng định nào sau đây là đúng?
Giá trị lớn nhất của hàm số \(y = {x^3} - 3x + 5\) trên đoạn \(\left[ {0;\frac{3}{2}} \right]\)
Tìm tất cả các giá trị thực của x thỏa mãn đẳng thức \({\log _3}x = 3{\log _3}2 + {\log _9}25 - {\log _{\sqrt 3 }}3\)
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Biết \(OA = a,\,\,OB = 2a\) , và đường thẳng AC tạo với mặt phẳng \(\left( {OBC} \right)\) một góc \({60^0}\). Thể tích khối tứ diện OABC bằng