A. \(\left[ { - 2;0} \right]\).
Lời giải
Chọn C
Phương trình \(f\left( {\sqrt {4x - {x^2}} - 1} \right) = m\) có điều kiện \(0 \le x \le 4\). Ta có bảng biến thiên
Từ bảng biến thiên suy ra, với \(0 \le x \le 4\) thì \( - 1 \le \sqrt {4x - {x^2}} - 1 \le 1\). Đặt \(t = \sqrt {4x - {x^2}} - 1\), \( - 1 \le t \le 1\). (Có thể biến đổi \(t = \sqrt {4 - {{\left( {x - 2} \right)}^2}} - 1 \Rightarrow - 1 \le t \le 1\)).
Phương trình đã cho trở thành \(f\left( t \right) = m\) (1). Phương trình đã cho có nghiệm \( \Leftrightarrow \) (1) có nghiệm \(t \in \left[ { - 1;1} \right] \Leftrightarrow - 4 \le m \le 0\).
Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đạo hàm là hàm số \(y = f'\left( x \right)\) với đồ thị như hình vẽ bên.
Biết rằng đồ thị hàm số \(y = f\left( x \right)\) tiếp xúc với trục hoành tại điểm có hoành độ âm. Khi đó đồ thị hàm số cắt trục tung tại điểm có tung độ là bao nhiêu?