Cho hàm số \(y = f\left( x \right)\) bảng biến thiên như hình bên dưới
Đồ thị hàm số \(g\left( x \right) = \frac{1}{{2f\left( {x + 3} \right) + 1}}\) có bao nhiêu tiệm cận đứng?
Lời giải
Chọn B
Xét phương trình \(2f\left( {x + 3} \right) + 1 \Leftrightarrow f\left( {x + 3} \right) = - \frac{1}{2}\) (*).
Đặt \(t = x + 3\) ta có phương trình trên trở thành \(f\left( t \right) = - \frac{1}{2}\) (**).
Số nghiệm của (**) là số giao điểm của đồ thị hàm số \(y = f\left( t \right)\) và đường thẳng \(y = - \frac{1}{2}\).
Từ bảng biến thiên ta có (**) có 3 nghiệm phân biệt, do đó (*) cũng có 3 nghiệm phân biệt.
Vậy đồ thị hàm số \(y = g\left( x \right)\) có 3 tiệm cận đứng.Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đạo hàm là hàm số \(y = f'\left( x \right)\) với đồ thị như hình vẽ bên.
Biết rằng đồ thị hàm số \(y = f\left( x \right)\) tiếp xúc với trục hoành tại điểm có hoành độ âm. Khi đó đồ thị hàm số cắt trục tung tại điểm có tung độ là bao nhiêu?