Một người vay 500 triệu đồng ngân hàng để lấy vốn làm ăn theo thể thức lãi kép với lãi suất không đổi trong suốt quá trình trả nợ là 1%/tháng (tính lãi ngân hàng). Mỗi tháng người đó phải trả 10 triệu đồng cho đến tháng cuối thì số tiền phải trả còn ít hơn 10 triệu. Hỏi số tiền phải trả trong tháng cuối là bao nhiêu? (Làm tròn đến hàng ngàn)
Đáp án B
Phương pháp:
Sử dụng công thức trả góp: \(P{\left( {1 + r} \right)^n} = \frac{M}{r}\left[ {{{\left( {1 + r} \right)}^n} - 1} \right]\) trong đó:
P: Số tiền vay ban đầu
M: Số tiền trả hàng kì
r: lãi suất
n: số kì hạn
Cách giải:
\(500{\left( {1 + 0,01} \right)^n} = \frac{{10}}{{0,01}}\left[ {{{\left( {1 + 0,01} \right)}^n} - 1} \right]\)
\( \Leftrightarrow 500{\left( {1 + 0,01} \right)^n} = 1000{\left( {1 + 0,01} \right)^n} - 1000\)
\( \Leftrightarrow 500{\left( {1 + 0,01} \right)^n} = 1000\)
\( \Leftrightarrow 1,{01^n} = 2 \Leftrightarrow n \approx {\log _{1,01}}2 \approx 69,99\)
\( \Rightarrow \) Số tiền phải trả trong tháng cuối là \(500{\left( {1 + 0,01} \right)^{69}} - \frac{{10}}{{0,01}}\left[ {{{\left( {1 + 0,01} \right)}^{69}} - 1} \right] \approx 6,553\) (triệu đồng)
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng 2a. Tính thể tích V của khối cầu ngoại tiếp khối chóp S.ABCD.
Tìm tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{x\sqrt {4 - {x^2}} }}{{{x^2} - 3x + 2}}\)
Cho hình chóp đều S.ABCD có cạnh đáy bằng 2a, góc giữa cạnh bên và mặt đáy bằng \({60^0}\). Thể tích V của hình chóp S.ABCD.
Tính khoảng cách d giữa 2 điểm cực trị của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\)
Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a.
Tính khoảng cách d ngắn nhất giữa hai điểm thuộc hai nhánh của đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\)
Tìm phương trình các đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {4{x^2} + 1} + 2x}}{x}\)
Một hình nón có chiều cao bằng \(\sqrt 5 \), đường kính đáy bằng 6. Tính thể tích V của khối nón đó?
Cho \(\left( {{C_m}} \right):y = 2{x^3} - \left( {3m + 3} \right){x^2} + 6mx - 4\). Gọi T là tập các giá trị của m thỏa mãn \(\left( {{C_m}} \right)\) có đúng hai điểm chung với Ox, tính tổng S các phần tử của T.
Cho hình chóp S.ABCD, M là trung điểm của SA. Gọi \(\left( \alpha \right)\) là mặt phẳng qua M và song song với mặt phẳng (ABCD). Mặt phẳng \(\left( \alpha \right)\) chia khối chóp S.ABCD thành hai khối gồm khối chứa điểm S có thể tích \({V_1}\) và khối chứa điểm A có thể tích \({V_2}\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\)?
Tìm tất cả các giá trị m để hàm số \(y = mx + 2\sin x - 3\cos \,x\) nghịch biến trên R.
Thiết diện qua trục của một hình nón là một tam giác vuông cân có diện tích là 50. Tính bán kính R của hình nón đó?
Tìm m để phương trình \({\log _2}\sqrt {{x^2} - 3x + 2} + {\log _{\frac{1}{2}}}\left( {x - m} \right) = x - m - \sqrt {{x^2} - 3x + 2} \) có nghiệm?
Tìm tất cả các giá trị của tham số m để hàm số \(y = \frac{{x - 2}}{{mx - 1}}\) đồng biến trên \(\left( {1; + \infty } \right)\)