a) Giải hệ phương trình :
b) Giải phương trình :
\(a)\left\{ \begin{array}{l}2x - 3y = 1\\x - 4y = - 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y = 3\end{array} \right. & & b){x^4} - 5{x^2} + 4 = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} = 4\\{x^2} = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \pm 2\\x = \pm 1\end{array} \right.\)
Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi E, D lần lượt là giao điểm của các tia phân giác trong và ngoài của hai góc B và C. Đường thẳng ED cắt BC tại I cắt cung nhỏ BC ở M. Chứng minh :
a) Ba điểm A, E, D thẳng hàng
b) Tứ giác BECD nội tiếp được trong đường tròn
c) BI.IC = ID.IE
4. Số đo của góc tạo bởi tia tiếp tuyến và dây cung bằng số đo của góc nội tiếp