Thứ sáu, 15/11/2024
IMG-LOGO

Câu hỏi:

25/06/2024 238

Cho tam giác ABC vuông tại A có . Gọi M và N lần lượt là trung điểm của BC và AC.

a) Tính góc .NMC.

b) Gọi E là điểm đối xứng với M qua N. Chứng minh tứ giác AECM là hình thoi.

c) Lấy D là điểm đối xứng với E qua BC. Tứ giác ACDB là hình gì? Tại sao?

d) Tam giác ABC có điều kiện gì thì tứ giác AECM là hình vuông?

Trả lời:

verified Giải bởi Vietjack

Lời giải

Media VietJack

a) Xét DABC vuông tại A có: \(\widehat B + \widehat C = 90^\circ \)

Suy ra \(\widehat B = 90^\circ - \widehat C = 90^\circ - 30^\circ = 60^\circ \).

Vì M, N lần lượt là trung điểm của BC, AC nên MN là đường trung bình của DABC.

Suy ra MN // AB nên \(\widehat {NMC} = \widehat B = 60^\circ \).

b) Ta có: E là điểm đối xứng với M qua N nên N là trung điểm của ME.

Lại có N là trung điểm của AC

Do đó tứ giác AECM có hai đường chéo AC, ME cắt nhau tại trung điểm N của mỗi đường nên là hình bình hành.

Mặt khác MN // AB và AB AC nên MN AC tại N.

Khi đó hình bình hành AECM có hai đường chéo vuông góc với nhau tại trung điểm của mỗi đường

Suy ra hình bình hành AECM là hình thoi.

c) • Ta có E, D đối xứng qua BC

Suy ra CE = CD nên DECD cân tại C

Khi đó đường cao CM đồng thời là đường phân giác của DECD

Suy ra \[\widehat {BCD} = \widehat {BCE}\]

Vì AECM là hình thoi nên CA là tia phân giác của góc ECM

Do đó \[\widehat {BCE} = 2.\widehat {ACB} = 60^\circ \].

Khi đó \[\widehat {BCD} = 60^\circ \].

Ta có \[\widehat {ACD} = \widehat {ACB} + \widehat {BCD} = 30^\circ + 60^\circ = 90^\circ \].

Hay CD AC.

Mà AB AC nên AB // DC.

• Mặt khác, DABC vuông tại A, có đường trung tuyến AM nên \(AM = \frac{1}{2}BC\).

DABC vuông tại A, có \(\widehat B = 60^\circ \) nên \(AB = \frac{1}{2}BC\).

Do đó AM = AB.

Lại có AECM là hình thoi nên AM = CE.

Khi đó: AB = AM = CE = CD.

• Xét tứ giác ABDC có AB // CD và AB = CD nên là hình bình hành.

Lại có \(\widehat {BAC} = 90^\circ \) nên ABDC là hình chữ nhật.

d) Do ABDC là hình chữ nhật nên hai đường chéo AD và BC cắt nhau tại trung điểm của mỗi đường.

Mà M là trung điểm của BC

Do đó M là trung điểm của AD hay A, M, D thẳng hàng.

Để tứ giác AECM là hình vuông thì AD BC tại M

Điều này xảy ra khi và chỉ khi DABC có đường trung tuyến AM đồng thời là đường cao, tức là ΔABC vuông cân tại A.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A (AB < AC) có D và E lần lượt là trung điểm của các cạnh AC và BC. Vẽ EF vuông góc với AB tại F.

a) Chứng minh rằng DE //AB và tứ giác ADEF là hình chữ nhật.

b) Trên tia đối của tia DE lấy điểm G sao cho DG = DE. Chứng minh tứ giác AECG là hình thoi.

c) Gọi O là giao điểm của AE và DF. Chứng minh rằng ba điểm B, O, G thẳng hàng.

d) Vẽ EH vuông góc với AG tại H. Chứng minh rằng tam giác DHF vuông.

Xem đáp án » 02/07/2023 464

Câu 2:

Cho nửa đường tròn (O; R) đường kính AB. Điểm C thuộc nửa đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H. Kẻ OI vuông góc với AC tại I.

a) Chứng minh bốn điểm C, H, O, I cùng thuộc một đường tròn.

b) Kẻ tiếp tuyến Ax của đường tròn (O; R), tia OI cắt Ax tại M, chứng minh OI.OM = R2. Tính độ dài đoạn thẳng OI biết OM = 2R và R = 6 cm.

c) Gọi giao điểm của BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC = KH.

Xem đáp án » 02/07/2023 327

Câu 3:

Cho tam giác ABC vuông tại A, đường cao AH.

a) Chứng minh: AH.BC = AB.AC.

b) Gọi M là điểm nằm ở giữa B và C. Kẻ MN vuông với AB, MP vuông góc với AC (N thuộc AB, P thuộc AC ) tứ giác ANMP là hình gì? Vì sao?

c) Tính số đo góc NHP?

d) Tìm vị trí M trên BC để NP có độ dài ngắn nhất?

Xem đáp án » 02/07/2023 284

Câu 4:

Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB = 3AM và CD = 2CN. Gọi G là trọng tâm của tam giác MNB. Phân tích các vectơ \(\overrightarrow {AN} ,\overrightarrow {MN} ,\overrightarrow {AG} \) qua các vectơ \(\overrightarrow {AB} \)\(\overrightarrow {AC} \).

Xem đáp án » 02/07/2023 255

Câu 5:

Cho nửa đường tròn (O; R) có đường kính AB. Vẽ các tiếp tuyến Ax, By của đường tròn (O), trên đường tròn (O) lấy một điểm E bất kì (E khác A, B). Tiếp tuyến tại E của đường tròn (O) cắt Ax, By lần lượt tại C, D.

a) Chứng minh: CD = AC + BD.

b) Vẽ EF vuông góc AB tại F, BE cắt AC tại K. Chứng minh: AF.AB = KE.EB.

c) EF cắt CB tại I. Chứng minh , suy ra FE là tia phân giác của góc CFD.

d) EA cắt CF tại M, EB cắt DF tại N. Chứng minh: M, I, N thẳng hàng.

Xem đáp án » 02/07/2023 187

Câu 6:

Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Từ M hạ MP vuông góc với AB (P AB), MQ vuông góc với AC (Q AC). Gọi R là điểm đối xứng M qua P.

a) Tứ giác AQMP là hình gì? Vì sao?

b) Tứ giác AMBR là hình gì? Vì sao?

c) Để tứ giác AQMP là hình vuông thì tam giác ABC cần thêm điều kiện gì?

Xem đáp án » 02/07/2023 156

Câu 7:

Cho tam giác ABC cân tại đỉnh A. Gọi H là trung điểm của BC, D là hình chiếu của H lên AC, M là trung điểm của HD. Chứng minh rằng: AM DB.

Xem đáp án » 02/07/2023 151

Câu 8:

Cho tam giác ABC nhọn, vẽ đường tròn \(\left( {O;\frac{1}{2}BC} \right)\) cắt các cạnh AB, AC theo thứ tự tại D và E.

a) Chứng minh rằng: CD vuông góc với AB, BE vuông góc với AC.

b) Gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc với BC.

Xem đáp án » 02/07/2023 149

Câu 9:

Cho nửa đường tròn (O), đường kính AB, vẽ các tiếp tuyến Ax, By của nửa đường tròn (O). Từ điểm M trên nửa đường tròn (M khác A, B) vẽ tiếp tuyến thứ ba của nửa đường tròn (O), cắt Ax ở C và cắt By ở D. Gọi N là giao điểm của BC và AD. Chứng minh rằng:

a) \(\frac{{CN}}{{AC}} = \frac{{NB}}{{BD}}\). 

b) MN  AB.

c) \[\widehat {COD} = 90^\circ \].

Xem đáp án » 02/07/2023 136

Câu 10:

Tìm giá trị của m để hai đồ thị hàm số y = 2x + (3 + m) và y = 3x + (5 – m) cắt nhau tại 1 điểm trên trục hoành.

Xem đáp án » 02/07/2023 119

Câu 11:

Cho nửa đường tròn tâm O có đường kính AB, Ax là tiếp tuyến của nửa đường tròn (Ax và nửa đường tròn nằm cùng phía đối với AB), C là một điểm thuộc nửa đường tròn, H là hình chiếu của C trên AB. Đường thẳng qua O và vuông góc với AC cắt Ax tại M. Gọi I là giao điểm của MB và CH. Chứng minh rằng CI = IH.

Xem đáp án » 02/07/2023 105

Câu 12:

Cho phương trình x2 – 2x – 2m2 = 0 (m là tham số).

a) Giải phương trình khi m = 0.

 b) Tìm m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa mãn điều kiện \(x_1^2 = 4x_2^2\).

Xem đáp án » 02/07/2023 103

Câu 13:

Tích của hai số là 625. Nếu gấp thừa số thứ nhất lên 2 lần và gấp thừa số thứ hai lên 3 lần thì tích mới là bao nhiêu?

Xem đáp án » 02/07/2023 98

Câu 14:

Cho hai hàm số bậc nhất có đồ thị là (D): y = (5m – 2)x – 3 và (D'): y = –x + 3 – 2m. Tìm m để (D) và (D') cắt nhau tại 1 điểm trên trục hoành.

Xem đáp án » 02/07/2023 97

Câu 15:

Cho phương trình x2 – (m – 1)x – m = 0, trong đó m là tham số, x là ẩn số. Tìm m để phương trình có hai nghiệm phân biệt đều nhỏ hơn 1.

Xem đáp án » 02/07/2023 88

Câu hỏi mới nhất

Xem thêm »
Xem thêm »