Cho đường tròn (O; R), đường kính MN. Qua M và N vẽ lần lượt hai tiếp tuyến (d) và (d’) với đường tròn (O). Một đường thẳng qua O cắt đường thẳng (d) ở A và cắt đường thẳng (d’) ở P. Từ O vẽ một tia vuông góc với AP và cắt đường thẳng (d’) ở B.
a) Chứng minh OA = OP.
b) Hạ OH vuông góc với AB. Chứng minh OH = R và AB là tiếp tuyến của đường tròn (O).
c) Chứng minh AM.BN = R2.
d) Tìm vị trí của điểm A để diện tích tứ giác ABNM nhỏ nhất.
Lời giải
a) Xét ∆OMA và ∆ONP, có:
\(\widehat {AOM} = \widehat {NOP}\) (đối đỉnh);
OM = ON (= R);
\(\widehat {AMO} = \widehat {ONP} = 90^\circ \).
Do đó ∆OMA = ∆ONP (g.c.g).
Suy ra OA = OP (cặp cạnh tương ứng).
b) ∆ABP có OB ⊥ AP (giả thiết) OA = OP (chứng minh trên).
Suy ra OB vừa là đường cao, vừa là đường trung tuyến của ∆ABP.
Do đó ∆ABP cân tại B.
Suy ra OB cũng là đường phân giác của ∆ABP.
Vì vậy OH = ON = R (tính chất điểm nằm trên tia phân giác của một góc).
Ta có AB ⊥ OH tại H.
Mà H thuộc đường tròn (O).
Vậy AB là tiếp tuyến của (O).
c) Ta có HA = MA và HB = NB (tính chất hai tiếp tuyến cắt nhau).
Tam giác AOB vuông tại O có OH là đường cao:
HA.HB = OH2 (hệ thức lượng trong tam giác vuông).
⇔ AM.BN = R2.
Vậy ta có điều phải chứng minh.
d) Tứ giác AMNB có \(\widehat {AMN} = \widehat {MNB} = 90^\circ \).
Suy ra AMNB là hình thang vuông.
Khi đó \({S_{AMNB}} = \frac{1}{2}\left( {AM + BN} \right).MN = \frac{1}{2}.\left( {AH + HB} \right).2R = AB.R\).
Ta có R không đổi và AB ≥ MN.
Suy ra SAMNB nhỏ nhất ⇔ AB nhỏ nhất.
Tức là, AB = MN.
Khi đó MN // AB.
Vì vậy AMNB là hình chữ nhật.
Suy ra AM = BN = OH = R.
Vậy điểm A nằm trên đường thẳng song song với MN và cách MN một khoảng bằng R.
Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh và SAEF = cos2A.SABC.
b) Gọi M là trung điểm của BC. Đường thẳng vuông góc với HM tại H cắt AB, AC lần lượt tại P và Q. Chứng minh PH = QH.
c) Chứng minh \(\cot A + \cot B + \cot C \ge \sqrt 3 \).
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm của tam giác ABQ.
d) Chứng minh SABC = 2SDEQP.
Cho tam giác đều ABC cạnh a, điểm M là trung điểm BC. Dựng các vectơ sau và tính độ dài của chúng.
a) \(\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} \);
b) \(\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} \);
c) \(\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} \);
d) \(\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} \).
Từ một điểm A nằm bên ngoài đường tròn (O; R), vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Đường thẳng vuông góc với OB tại O cắt tia AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M.
1) Xác định hình tính của tứ giác AMON.
2) Điểm A phải cách O một khoảng là bao nhiêu để MN là tiếp tuyến của (O)?
3) Tính diện tích tứ giác AMON.
Tam giác ABC có AB = AC, tia phân giác của \(\widehat A\) cắt BC tại D.
a) Chứng minh rằng AD vuông góc với BC.
b) Lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho BE = CF. Chứng minh rằng DA là tia phân giác của \(\widehat {EDF}\).
Cho tam giác ABC có 3 góc nhọn, AB < AC, đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh .
b) EF cắt CB tại M. Chứng minh MB.MC = ME.MF.
c) Biết SABC = 24, BD = 3 và CD = 5. Tính SBHC.
Cho tam giác ABC có AB = AC. Tia phân giác \(\widehat A\) cắt BC tại D.
a) Chứng minh DB = DC.
b) Chứng minh AD vuông góc BC.
Cho tứ diện ABCD với \(AC = \frac{3}{2}AD,\,\,\widehat {CAB} = \widehat {DAB} = 60^\circ ,\,\,CD = AD\). Gọi φ là góc giữa hai đường thẳng AB và CD. Chọn khẳng định đúng về góc φ.
Cho tam giác ABC vuông tại A có AB = AC. Qua A vẽ đường thẳng d (B, C nằm cùng phía đối với d). Kẻ BM và CN vuông góc với d. Chứng minh rằng:
a) ∆BAM = ∆ACN;
b) MN = BM + CN.
Cho biểu thức \(P = \frac{{{x^2} + x}}{{{x^2} - 2x + 1}}:\left( {\frac{{x + 1}}{x} - \frac{1}{{1 - x}} + \frac{{2 - {x^2}}}{{{x^2} - x}}} \right)\).
a) Rút gọn P.
b) Tìm x để P < 1.
c) Tìm giá trị nhỏ nhất của P khi x > 2.