Cho cơ hệ như hình vẽ: lò xo rất nhẹ có độ cứng 100 N/m nối với vật m có khối lượng 1 kg , sợi dây rất nhẹ có chiều dài 2,5 cm và không giãn, một đầu sợi dây nối với lò xo, đầu còn lại nối với giá treo cố định. Vật m được đặt trên giá đỡ D và lò xo không biến dạng, lò xo luôn có phương thẳng đứng, đầu trên của lò xo lúc đầu sát với giá treo. Cho giá đỡ D bắt đầu chuyển động thẳng đứng xuống dưới nhanh dần đều với gia tốc có độ lớn là 5 m/s2. Bỏ qua mọi lực cản, lấy g = 10 m/s2. Xác định thời gian ngắn nhất từ khi m rời giá đỡ D cho đến khi vật m trở lại vị trí lò xo không biến dạng lần thứ nhất.
B. \[\frac{\pi }{5}s\]
D. \[\frac{{5\pi }}{6}s\]
c
Giả sử m bắt đầu rời khỏi giá đỡ D khi lò xo dãn 1 đoạn là Δl,
Tại vị trí này ta có \(mg - k\Delta \ell = ma = > \Delta \ell = \frac{{m(g - a)}}{k} = 5(cm)\)
Lúc này vật đã đi được quãng đường S = 2,5+5=7,5(cm)
Mặt khác quãng đường \(S = \frac{{a.{t^2}}}{2} = > t = \sqrt {\frac{{2S}}{a}} = \,\sqrt {\frac{{2.7,5}}{{500}}} = \frac{{\sqrt 3 }}{{10}}(s)\)
Tại vị trí này vận tốc của vật là: v=a.t = \[50\sqrt 3 \] (cm/s)
Độ biến dạng của lò xo khi vật ở vị trí cân bằng là:
\(\Delta {\ell _0} = \frac{{m.g}}{k} = > \Delta {\ell _0} = 10(cm)\)
=> li độ của m tại vị trí rời giá đỡ
x = - 5(cm).
Tần số góc dao động :
\(\omega = \sqrt {\frac{k}{m}} = \sqrt {\frac{{100}}{1}} = 10rad/s.\)
Biên độ dao động
của vật m ngay khi rời giá D là:
\(A = \sqrt {{x^2} + \frac{{{v^2}}}{{{\omega ^2}}}} = \sqrt {{5^2} + {{(\frac{{50\sqrt 3 }}{{10}})}^2}} = 10\;cm\)
Lưu ý : Biên độ : \(A = \Delta {\ell _0} = 10(cm).\)
chu kì: \[T = \frac{{2\pi }}{\omega } = \frac{{2\pi }}{{10}} = \frac{\pi }{5}s.\]
Thời gian ngắn nhất từ khi m rời giá đỡ D cho đến khi
vật m trở lại vị trí lò xo không biến dạng lần thứ nhất.
(Dùng vòng tròn pha ) \[t = \frac{T}{{12}} + \frac{T}{2} + \frac{T}{4} = \frac{{5T}}{6} = \frac{\pi }{6}s.\]=> đáp án C.
Ba điểm \[A,B,C\] trên mặt nước là 3 đỉnh của tam giác đều có cạnh bằng 8 cm, trong đó \[A\] và \[B\] là 2 nguồn phát sóng cơ giống nhau, có bước sóng 0,8 cm. Điểm M trên đường trung trực của \[AB\], dao động cùng pha với điểm \[C\] và gần \[C\] nhất thì phải cách \[C\] một khoảng bằng
Mức cường độ âm của một âm có cường độ âm là I được xác định bởi công thức
Cường độ dòng điện \[i = 2cos(100\pi t)(A)\] có giá trị cực đại là
Cường độ dòng điện \[i = 4cos100\pi t\left( A \right)\]có pha dao động tại thời điểm t là
Con lắc đơn dao động điều hòa, khi chiều dài của con lắc đơn tăng lên 4 lần thì chu kì dao động của con lắc
Hệ số công suất của một đoạn mạch xoay chiều gồm R, L, C ghép nối tiếp được tính bởi công thức:
Một sóng cơ học có tần số \[f = 1000Hz\] lan truyền trong không khí. Sóng đó được gọi là
Một máy biến áp có số vòng dây của cuộn sơ cấp lớn hơn số vòng dây của cuộn thứ cấp. Máy biến áp này có tác dụng
Câu 1. Cho đoạn mạch điện xoay chiều chỉ có tụ điện với điện dung \(C = \frac{{{{10}^{ - 4}}}}{\pi }\left( F \right)\). Đặt điện áp xoay chiều có tần số 50Hz vào hai đầu đoạn mạch. Tại thời điểm mà điện áp hai đầu mạch có giá trị \(100\sqrt {10} V\) thì cường độ dòng điện trong mạch là \(\sqrt 2 A\) . Điện áp hiệu dụng hai đầu tụ điện có giá trị là
Trong các biểu thức của giá trị hiệu dụng của dòng điện xoay chiều sau, hãy chọn công thức sai
Cho một đoạn mạch RC có \[R = 50\,\Omega ,\]\[C = \frac{{{{2.10}^{ - 4}}}}{\pi }F\] . Đặt vào hai đầu đoạn mạch một điện áp \[u = 100\cos \left( {100\pi t - \frac{\pi }{4}} \right)V\] . Cường độ dòng điện hiệu dụng trong mạch là
Một âm có tần số xác định truyền trong nhôm,nước,không khí với tốc độ lần lượt là v1,v2,v3.Nhận định nào sau đây là đúng:
Đặt điện áp vào hai đầu đoạn mạch RLC không phân nhánh với L, R có độ lớn không đổi và \[C = \frac{{{{10}^{ - 4}}}}{{2\pi }}F,\] Khi đó điện áp hiệu dụng ở hai đầu mỗi phần tử R, L, C có độ lớn như nhau. Công suất tiêu thụ của đoạn mạch là
Cho hai dao động điều hòa cùng phương, cùng tần số có phương trình \[{x_1} = {A_1}{\rm{cos(}}\omega {\rm{t + }}{\varphi _1})\] và \[{x_2} = {A_2}{\rm{cos(}}\omega {\rm{t + }}{\varphi _2})\]. Biên độ dao động tổng hợp có giá trị nhỏ nhất khi