IMG-LOGO

Câu hỏi:

13/07/2024 66

Cho hàm số: \(y = \frac{m}{3}{x^3} - (m - 1){x^2} + 3(m - 2)x + 1\)để hàm số đạt cực đại x1, x2 thỏa mãn x1 + 2x2 = 1 thì giá trị của m bằng?

Trả lời:

verified Giải bởi Vietjack

Ta có: y' = mx2 – 2(m – 1)x + 3(m – 2) (m ≠ 0)

Để hàm số có cực đại tại x1 và cực tiểu tại x2 thì phương tình

y' = mx2 – 2(m – 1)x + 3(m – 2) = 0 có 2 nghiệm phân biệt.

\( \Rightarrow \Delta '\) = (m – 1)2 – 3m(m – 2) = −2m2 + 4m + 1 > 0

\( \Rightarrow 1 - \frac{{\sqrt 6 }}{2} < m < 1 + \frac{{\sqrt 6 }}{2}\) (1)

Khi đó áp dụng định lý Vi−ét, ta có:

\(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{2(m - 1)}}{m}\,\,(2)\\{x_1}{x_2} = \frac{{3(m - 2)}}{m}\,\,(3)\end{array} \right.\)

Mặt khác theo bài cho ta có: x1 + 2x2 = 1 (4)

Nếu 2x1 + x2 = 0 (5)

Từ (4) và (5) \( \Rightarrow {x_1} = - \frac{1}{3};{x_2} = \frac{2}{3}\).

Thay vào (2) ta có: \(2\frac{{m - 1}}{m} = \frac{1}{3} \Rightarrow m = \frac{6}{5}\)

Thay vào (3) ta có: \(3\frac{{m - 2}}{m} = - \frac{2}{9} \Rightarrow m = \frac{{54}}{9}\)

Suy ra 2x1 + x2 ≠ 0

Khi đó nhân hai vế của (4) với 2x1 + x2 ta có:

(x1 + 2x2)(2x1 + x2) = 2x1 + x2

\( \Leftrightarrow \) 2(x1 + x2)2 + x1x2 = 2x1 + x2

Thay (2) và (3) vào ta được:

\(8\frac{{{{(m - 1)}^2}}}{{{m^2}}} + 3\frac{{m - 2}}{m} = 2{x_1} + {x_2}\)

\( \Leftrightarrow 8\frac{{{{(m - 1)}^2}}}{{{m^2}}} + 3\frac{{m - 2}}{m} + 1 = 2{x_1} + {x_2} + {x_1} + 2{x_2}\)

\( \Leftrightarrow 8\frac{{{{(m - 1)}^2}}}{{{m^2}}} + 3\frac{{m - 2}}{m} + 1 = 3({x_1} + {x_2})\)

\( \Leftrightarrow 8\frac{{{{(m - 1)}^2}}}{{{m^2}}} + 3\frac{{m - 2}}{m} + 1 = 6\frac{{m - 1}}{m}\)

\( \Leftrightarrow 8{(m - 1)^2} + 3m(m - 2) + {m^2} = 6m(m - 1)\)

\( \Leftrightarrow 3{m^2} - 8m + 4 = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}m = \frac{2}{3}\\m = 2\end{array} \right.\) (TMĐK)

Vậy có hai giá trị m thỏa mãn yêu cầu bài toán là: \(m = \frac{2}{3}\); m = 2.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (O; 4 cm), đường kính AB. Lấy điểm H thuộc đoạn AO sao cho OH = 1 cm. Kẻ dây cung DC vuông góc với AB tại H.

a) Chứng minh ∆ABC vuông và tính độ dài AC.

b) Tiếp tuyến tại A của (O) cắt BC tại E. Chứng minh ∆CBD cân và \(\frac{{EC}}{{DH}} = \frac{{EA}}{{DB}}\).

c) Gọi I là trung điểm của EA; đoạn IB cắt (O) tại Q. Chứng minh CI là tiếp tuyến của (O) cà từ đó suy ra \(\widehat {ICQ} = \widehat {CBI}\).

d) Tiếp tuyến tại B của (O) cắt IC tại F. Chứng minh ba đường thẳng IB, HC, AF đồng quy.

Xem đáp án » 10/07/2023 185

Câu 2:

Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB và kẻ HF vuông góc với AC.

a) CM: AE.AB = AF.AC;

b) Cho biết AB = 4 cm, AH = 3 cm. Tính AE và BE;

c) Cho biết \[\widehat {HAC} = 30^\circ \]. Tính FC.

Xem đáp án » 10/07/2023 152

Câu 3:

Cho đường tròn tâm O đường kính AB = 2R. Gọi C là trung điểm của OA, qua C kẻ đường thẳng vuông góc với OA cắt đường tròn (O) tại hai điểm phân biệt M và N. Trên cung nhỏ BM lấy điểm K (K khác B và M). Gọi H là giao điểm của AK và MN.

a) Chứng minh tứ giác BCHK  nội tiếp đường tròn.

b) Chứng minh AK.AH = R2.

Xem đáp án » 10/07/2023 142

Câu 4:

Cho hình vẽ biết xx’ // yy’ và \(\widehat {xAB} = 70^\circ \). Tính số đô góc \(\widehat {yBz'}\)\(\widehat {ABy}\).

Cho hình vẽ biết xx’ // yy’ và góc xAB = 70 độ. Tính số đo góc yBz' và ABy (ảnh 1)

Xem đáp án » 10/07/2023 140

Câu 5:

Cho 6 điểm A, B, C, D, E, F. Tổng \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} \) bằng:

Xem đáp án » 10/07/2023 107

Câu 6:

Viết tập hợp A là các số \(x\,\, \vdots \,\,5\), thỏa mãn 124 < x < 145 bằng cách liệt kê các phần tử.

Xem đáp án » 10/07/2023 95

Câu 7:

Nếu \(\sin x + \cos x = \frac{1}{2}\) thì sinx, cosx bằng?

Xem đáp án » 10/07/2023 92

Câu 8:

Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.

a) Tứ giác ADHE là hình gì? Vì sao?

b) Chứng minh: AB2 = AH.BC.

Xem đáp án » 10/07/2023 92

Câu 9:

Cho hình vẽ:

Cho hình vẽ: a) Giải thích tại sao xx’ // yy’. b) Tính số đo góc MNB (ảnh 1)

a) Giải thích tại sao xx’ // yy’.

b) Tính số đo \(\widehat {MNB}\).

Xem đáp án » 10/07/2023 89

Câu 10:

Cho tập hợp A = [−5; 3). Tập hợp CRA là:

Xem đáp án » 10/07/2023 89

Câu 11:

Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By theo thứ tự ở C và D. Chứng minh rằng đường tròn có đường kính CD tiếp xúc với AB.

Xem đáp án » 10/07/2023 86

Câu 12:

Cho đường tròn (O) bán kính OA = 4 cm. Dây BC vuông góc với OA tại trung điểm của OA. Tính độ dài BC.

Xem đáp án » 10/07/2023 86

Câu 13:

1) Xác định hàm số y = ax + b, biết rằng đồ thị hàm số đi qua hai điểm

A(2; −4) và B(−1; 5).

2) Trên hệ trục tọa độ Oxy, vẽ đồ thị hàm số y = −2x + 1.

Xem đáp án » 10/07/2023 86

Câu 14:

Cho hình thang ABCD (AB // CD) có BC = 15 cm. Điểm E thuộc cạnh AD sao cho \(\frac{{AE}}{{AD}} = \frac{1}{3}\). Qua E kẻ đường thẳng song song với CD cắt BC tại F. Tính độ dài BF.

Xem đáp án » 10/07/2023 86

Câu 15:

Rút gọn biểu thức:

S = cos(90° − x).sin(180° − x) – sin(90° − x).cos(180° − x).

Xem đáp án » 10/07/2023 84

Câu hỏi mới nhất

Xem thêm »
Xem thêm »