Cho hàm số: \(y = \frac{m}{3}{x^3} - (m - 1){x^2} + 3(m - 2)x + 1\)để hàm số đạt cực đại x1, x2 thỏa mãn x1 + 2x2 = 1 thì giá trị của m bằng?
Ta có: y' = mx2 – 2(m – 1)x + 3(m – 2) (m ≠ 0)
Để hàm số có cực đại tại x1 và cực tiểu tại x2 thì phương tình
y' = mx2 – 2(m – 1)x + 3(m – 2) = 0 có 2 nghiệm phân biệt.
\( \Rightarrow \Delta '\) = (m – 1)2 – 3m(m – 2) = −2m2 + 4m + 1 > 0
\( \Rightarrow 1 - \frac{{\sqrt 6 }}{2} < m < 1 + \frac{{\sqrt 6 }}{2}\) (1)
Khi đó áp dụng định lý Vi−ét, ta có:
\(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{2(m - 1)}}{m}\,\,(2)\\{x_1}{x_2} = \frac{{3(m - 2)}}{m}\,\,(3)\end{array} \right.\)
Mặt khác theo bài cho ta có: x1 + 2x2 = 1 (4)
Nếu 2x1 + x2 = 0 (5)
Từ (4) và (5) \( \Rightarrow {x_1} = - \frac{1}{3};{x_2} = \frac{2}{3}\).
Thay vào (2) ta có: \(2\frac{{m - 1}}{m} = \frac{1}{3} \Rightarrow m = \frac{6}{5}\)
Thay vào (3) ta có: \(3\frac{{m - 2}}{m} = - \frac{2}{9} \Rightarrow m = \frac{{54}}{9}\)
Suy ra 2x1 + x2 ≠ 0
Khi đó nhân hai vế của (4) với 2x1 + x2 ta có:
(x1 + 2x2)(2x1 + x2) = 2x1 + x2
\( \Leftrightarrow \) 2(x1 + x2)2 + x1x2 = 2x1 + x2
Thay (2) và (3) vào ta được:
\(8\frac{{{{(m - 1)}^2}}}{{{m^2}}} + 3\frac{{m - 2}}{m} = 2{x_1} + {x_2}\)
\( \Leftrightarrow 8\frac{{{{(m - 1)}^2}}}{{{m^2}}} + 3\frac{{m - 2}}{m} + 1 = 2{x_1} + {x_2} + {x_1} + 2{x_2}\)
\( \Leftrightarrow 8\frac{{{{(m - 1)}^2}}}{{{m^2}}} + 3\frac{{m - 2}}{m} + 1 = 3({x_1} + {x_2})\)
\( \Leftrightarrow 8\frac{{{{(m - 1)}^2}}}{{{m^2}}} + 3\frac{{m - 2}}{m} + 1 = 6\frac{{m - 1}}{m}\)
\( \Leftrightarrow 8{(m - 1)^2} + 3m(m - 2) + {m^2} = 6m(m - 1)\)
\( \Leftrightarrow 3{m^2} - 8m + 4 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}m = \frac{2}{3}\\m = 2\end{array} \right.\) (TMĐK)
Vậy có hai giá trị m thỏa mãn yêu cầu bài toán là: \(m = \frac{2}{3}\); m = 2.
Cho đường tròn (O; 4 cm), đường kính AB. Lấy điểm H thuộc đoạn AO sao cho OH = 1 cm. Kẻ dây cung DC vuông góc với AB tại H.
a) Chứng minh ∆ABC vuông và tính độ dài AC.
b) Tiếp tuyến tại A của (O) cắt BC tại E. Chứng minh ∆CBD cân và \(\frac{{EC}}{{DH}} = \frac{{EA}}{{DB}}\).
c) Gọi I là trung điểm của EA; đoạn IB cắt (O) tại Q. Chứng minh CI là tiếp tuyến của (O) cà từ đó suy ra \(\widehat {ICQ} = \widehat {CBI}\).
d) Tiếp tuyến tại B của (O) cắt IC tại F. Chứng minh ba đường thẳng IB, HC, AF đồng quy.
Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB và kẻ HF vuông góc với AC.
a) CM: AE.AB = AF.AC;
b) Cho biết AB = 4 cm, AH = 3 cm. Tính AE và BE;
c) Cho biết \[\widehat {HAC} = 30^\circ \]. Tính FC.
Cho đường tròn tâm O đường kính AB = 2R. Gọi C là trung điểm của OA, qua C kẻ đường thẳng vuông góc với OA cắt đường tròn (O) tại hai điểm phân biệt M và N. Trên cung nhỏ BM lấy điểm K (K khác B và M). Gọi H là giao điểm của AK và MN.
a) Chứng minh tứ giác BCHK nội tiếp đường tròn.
b) Chứng minh AK.AH = R2.
Cho hình vẽ biết xx’ // yy’ và \(\widehat {xAB} = 70^\circ \). Tính số đô góc \(\widehat {yBz'}\) và \(\widehat {ABy}\).
Cho 6 điểm A, B, C, D, E, F. Tổng \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} \) bằng:
Viết tập hợp A là các số \(x\,\, \vdots \,\,5\), thỏa mãn 124 < x < 145 bằng cách liệt kê các phần tử.
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
a) Tứ giác ADHE là hình gì? Vì sao?
b) Chứng minh: AB2 = AH.BC.
Cho đường tròn (O) bán kính OA = 4 cm. Dây BC vuông góc với OA tại trung điểm của OA. Tính độ dài BC.
1) Xác định hàm số y = ax + b, biết rằng đồ thị hàm số đi qua hai điểm
A(2; −4) và B(−1; 5).
2) Trên hệ trục tọa độ Oxy, vẽ đồ thị hàm số y = −2x + 1.
Cho hình vẽ:
a) Giải thích tại sao xx’ // yy’.
b) Tính số đo \(\widehat {MNB}\).
Hai bạn An và Khang đi mua 18 gói bánh và 12 gói kẹo để đến lớp ăn liên hoan. An đưa cho cô bán hàng 4 tờ 50 000 đồng và đc trả lại 72 000 đồng. Khang nói "cô tính sai rồi". Em hãy cho biết Khang nói đúng hay sai? Giải thích tại sao?
Rút gọn biểu thức:
S = cos(90° − x).sin(180° − x) – sin(90° − x).cos(180° − x).