Cho tam giác ABC vuông tại A, đường cao AH. Qua H kẻ các đường thẳng song song với AB và AC lần lượt cắt AC tại E, AB tại D.
a) Chứng minh rằng: Tứ giác ADHE là hình chữ nhật.
b) Gọi M, N lần lượt là trung điểm của BH và CH. Biết AB = 6 cm; AC = 8 cm. Tính BC, DM, DM + EN?
c) Chứng minh rằng: Tứ giác DMNE là hình thang.
a) Xét tứ giác ADHE có AD // EH và DH // AE
Suy ra ADHE là hình bình hành
Mà \(\widehat {DA{\rm{E}}} = 90^\circ \)
Suy ra ADHF là hình chữ nhật.
b) Áp dụng định lý Pytago trong tam giác vuông ABC có:
BC2 = AB2 + AC2
Thay số: BC2 = 62 + 82 = 100
Suy ra BC = 10
Xét tam giác ABC vuông tại A có AH . BC = AB . AC
Thay số: AH . 10 = 6 . 8
Suy ra AH = 4,8
Vì tam giác ABH vuông tại H, theo định lý Pytago ta có
AB2 = AH2 + HB2
Thay số: 62 = 4,82 + HB2
Suy ra BH = 3,6
Vì tam giác BHD vuông tại D có DM là trung tuyến
Suy ra \[DM = MH = \frac{1}{2}BH = \frac{1}{2}.3,6 = 1,8\]
Ta có CH = BC – BH = 10 – 4,8 = 5,2.
Vì tam giác CHE vuông tại E có EN là trung tuyến
Suy ra \[EN = NH = \frac{1}{2}CH = \frac{1}{2}.5,2 = 2,6\].
Ta có DM + EN = 1,8 + 2,6 = 4,4 (cm)
c) Gọi O là giao điểm của AH và DE.
Vì ADHE là hình chữ nhật nên O là trung điểm của AH, DE và AH = DE.
Suy ra OA = OD = OE = OH
Do đó tam giác OHD cân tại O
Suy ra \(\widehat {O{\rm{D}}H} = \widehat {OH{\rm{D}}}\)
Vì DM = MH (chứng minh câu b) nên tam giác DMH cân tại M
Suy ra \(\widehat {{\rm{MD}}H} = \widehat {MH{\rm{D}}}\)
Ta có \(\widehat {MHD} + \widehat {OH{\rm{D}}} = \widehat {AHB} = 90^\circ \)
Mà \(\widehat {O{\rm{D}}H} = \widehat {OH{\rm{D}}}\), \(\widehat {{\rm{MD}}H} = \widehat {MH{\rm{D}}}\)
Suy ra \(\widehat {MDH} + \widehat {O{\rm{DH}}} = \widehat {M{\rm{D}}O} = 90^\circ \)
Do đó DM ⊥ DO (1)
Vì OE = OH
Do đó tam giác OEH cân tại O
Suy ra \(\widehat {OEH} = \widehat {OHE}\)
Vì HN = EN (chứng minh câu b) nên tam giác ENH cân tại N
Suy ra \(\widehat {{\rm{NE}}H} = \widehat {NHE}\)
Ta có \(\widehat {OHE} + \widehat {EHN} = \widehat {AHN} = 90^\circ \)
Mà \(\widehat {OEH} = \widehat {OHE}\), \(\widehat {{\rm{NE}}H} = \widehat {NHE}\)
Suy ra \(\widehat {OEH} + \widehat {OEN} = \widehat {OEN} = 90^\circ \)
Do đó EN ⊥ EO (2)
Từ (1) và (2) suy ra DM // EN
Vậy DENM là hình thang.
Cho hình chóp đỉnh S có đáy là hình thang ABCD với AB là đáy lớn. Gọi M, N theo thứ tự là trung điểm của các cạnh SB và SC.
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC).
b) Tìm giao điểm của đường thẳng SD với mặt phẳng (AMN).
c) Tìm thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (AMN).
Chứng minh các hệ thức
a) \(1 + {\tan ^2}a = \frac{1}{{{\rm{co}}{{\rm{s}}^2}a}}\);
b) \(1 + {\cot ^2}a = \frac{1}{{{\rm{si}}{{\rm{n}}^2}a}}\);
c) \(\frac{{\cos a}}{{1 - \sin a}} = \frac{{1 + \sin a}}{{\cos a}}\).
Cho hình vuông ABCD. Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE = CF.
a) Chứng minh tam giác EDF vuông cân.
b) Gọi I là trung điểm của EF. Chứng minh BI = DI.
c) Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh O, C, I thẳng hàng.
Phương trình \(\sqrt 3 \sin x - cosx = 1\) tương đương với phương trình nào sau đây?
Cho tam giác ABC nhọn. Chứng minh rằng BC2 = AB2 + AC2 – 2AB.AC.cosA.
Cho tam giác ABC nhọn, BD vuông góc với AC, D thuộc AC, CE vuông góc với AB, E thuộc AB, BD cắt CE tại I. Chứng minh góc BIC bù góc A.
Cho đường tròn tâm O bán kính R = 2,5 cm và dây AB di động, sao cho AB = 4 cm. Hỏi trung điểm H của AB di động trên đường nào?
Cho tam giác ABC cân tại A \(\left( {\widehat A < 90^\circ } \right)\), đường cao AH. Kẻ HK ⊥ AC (K ∈ AC).
a) Tính HC, HK, \(\widehat C\) nếu AH = 20 cm, AC = 25 cm.
b) Qua B kẻ đường thẳng song song với AH, đường thẳng này cắt AC tại điểm E. Kẻ BD ⊥ AC (D ∈ AC). Chứng minh \(B{H^2} = \frac{{C{\rm{D}}.CE}}{4}\).
c) Gọi O là giao điểm của BD và AH. Chứng minh \(\frac{{BO}}{{DO}} = \frac{{A{\rm{E}}}}{{A{\rm{D}}}}\).
d) Kẻ KF ⊥ BC (F ∈ BC). Chứng minh CF = AC. sin3E.
Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN = BM. Chứng minh:
a) \(\widehat {ABI} = \widehat {ACI}\)và AI là tia phân giác của góc BAC.
b) AM = AN.
c) AI vuông góc với BC.
Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN = BM. Chứng minh:
a) \(\widehat {ABI} = \widehat {ACI}\)và AI là tia phân giác của góc BAC.
b) AM = AN.
c) AI vuông góc với BC.
Một ô tô chạy 100km hết 13 lít xăng. Hỏi cần bao nhiêu xăng khi ô tô chạy quãng đường 300 000 m?