Hai bình hình trụ có tiết diện \[{s_1}\], \[{s_2}\] được thông với nhau bằng một ống nhỏ và có chứa nước. Trên mặt nước có đặt các pittông mỏng, khối lượng \[{m_1}\], \[{m_2}\]. Khi đặt một quả cân m = 1 kg trên pittông \[{s_1}\] thì mực nước bên pittông có quả cân thấp hơn mực nước bên kia một đoạn \[{h_1}\]= 20 cm. Khi đặt quả cân sang pittông \[{s_2}\] thì mực nước bên quả cân thấp hơn bên này một đoạn \[{h_2}\] = 5 cm. Biết \[{s_1}\] = 1,5\[{s_2}\], \[{m_1}\] = \[{m_2}\]
a. Tìm khối lượng các pittông.
b. Tìm độ chênh lệch mực nước ở hai bình khi chưa đặt quả cân, cho khối lượng riêng của nước là D = 1000 kg/m3.
Lời giải:
Áp suất tại điểm A: \({p_A} = {p_0} + \frac{{10m}}{{{S_1}}} + \frac{{10{m_1}}}{{{S_1}}}\)
Áp suất tại điểm B: \({p_B} = {p_0} + 10.D.h + \frac{{10{m_2}}}{{{S_2}}}\)
Áp dụng tính chất bình thông nhau: \({p_A} = {p_B}\)
\({p_0} + \frac{{10m}}{{{S_1}}} + \frac{{10{m_1}}}{{{S_1}}} = {p_0} + 10.D.h + \frac{{10{m_2}}}{{{S_2}}}\)\( \Leftrightarrow \frac{{10m}}{{{S_1}}} + \frac{{10{m_1}}}{{{S_1}}} = 10.D.{h_1} + \frac{{10{m_2}}}{{{S_2}}}(1)\)
\({p_A}^' = {p_0} + \frac{{10{m_1}}}{{{S_1}}} + 10.D.{h_2}\)
\({p_B}^' = {p_0} + \frac{{10{m_2}}}{{{S_2}}} + \frac{{10m}}{{{S_2}}}\)
\( \to {p_A}^' = {p_B}^'\)\( \to \frac{{10{m_1}}}{{{S_1}}} + 10.D.{h_2} = \frac{{10{m_2}}}{{{S_2}}} + \frac{{10m}}{{{S_2}}}\,\,(2)\)
Trừ vế theo vế của phương trình (1) cho phương trình (2):
\(\frac{{10m}}{{{S_1}}} - 10.D.{h_2} = 10.D.{h_1} - \frac{{10m}}{{{S_2}}}\)\( \Leftrightarrow \frac{{10m}}{{{S_1}}} + \frac{{10m}}{{{S_2}}} = 10.D.({h_1} + {h_2})\)
\( \Leftrightarrow \frac{{50m}}{{3{S_1}}} = 10.D.({h_1} + {h_2})\,\,(v\`i \,\,{S_1} = 1,5{S_2})\)
\( \Leftrightarrow {S_1} = \frac{{50m}}{{1000.3.10.({h_1} + {h_2})}} = \frac{{50.1}}{{1000.3.10.(20 + 5){{.10}^{ - 2}}}} = \frac{1}{{150}}{m^2}\)\( \Rightarrow {S_2} = \frac{1}{{100}}{m^2}\)
Thay vào phương trình (1):
\(\frac{{10.1}}{{\frac{1}{{150}}}} + \frac{{10.{m_1}}}{{\frac{1}{{150}}}} = 10.1000.0,2 + \frac{{10.{m_2}}}{{\frac{1}{{100}}}}\) \( \Leftrightarrow 1500 + 1500{m_1} = 2000 + 1000{m_1}({m_2} = {m_1})\)
\( \Leftrightarrow 500{m_1} = 500\)\( \Leftrightarrow {m_1} = 1(kg)\)\( \to {m_2} = 1(kg)\)
b. Khi chưa có quả cân: sát tại mặt thoáng:
\({p_C} = {p_0} + \frac{{10{m_1}}}{{{S_1}}} = {p_0} + \frac{{10.1}}{{\frac{1}{{150}}}} = {p_0} + 1500\)
\({p_D} = {p_0} + \frac{{10{m_2}}}{{{S_2}}} = {p_0} + \frac{{10.1}}{{\frac{1}{{100}}}} = {p_0} + 1000\)
\( \to {p_C} > \;{p_D}\)\( \to {p_C} = {p_0} + 10.D.h\)
\( \Leftrightarrow {p_0} + 1500 = {p_0} + 1000 + 10.1000.h\)\( \Leftrightarrow 500 = 10000.h\)\( \Leftrightarrow h = 0,05(m)\)
Cho mạch điện như hình vẽ:
Đèn Đ1 loại 3 V - 1,5 W, đèn Đ2 loại 6 V - 3 W. Hiệu điện thế giữa hai điểm M và N là UMN = 9 V. Ampe kế A và dây nối có điện trở không đáng kể. Điều chỉnh cho R1 = 1,2 \[\Omega \] và R2 = 2 \[\Omega \]. Tìm số chỉ của ampe kế, các đèn sáng thế nào?
Ô tô có khối lượng 1200 kg khi chạy trên đường nằm ngang với vận tốc v = 72 km/h thì tiêu hao 80 g xăng trên đoạn đường S = 1 km. Hiệu suất động cơ là 20%.
Tính công suất của ô tô. Cho biết khi 1 kg xăng bị đốt cháy thì tỏa ra năng lượng là 45.106 J.
Khi ô tô đang chạy với vận tốc 15 m/s trên một đoạn đường thẳng thì người lái xe hãm phanh cho ô tô chạy chậm dần đều. Sau khi chạy thêm 125 m thì vận tốc của ô tô chỉ còn 10 m/s. Hãy tính :
a) Gia tốc của ô tô.
b) Thời gian ô tô chạy thêm được 125 m kể từ khi bắt đầu hãm phanh.
c) Thời gian chuyển động cho đến khi xe dừng hẳn.
Một điện tích điểm \(q = {10^{ - 6}}\,C\) đặt trong không khí.
a) Xác định cường độ điện trường tại điểm cách điện tích 30 cm.
b) Đặt điện tích trong chất lỏng có hằng số điện môi là 16. Điểm có cường độ điện trường như câu a cách điện tích bao nhiêu?