IMG-LOGO

Câu hỏi:

13/07/2024 119

Cho nửa đường tròn (O; R) có đường kính AB. Kẻ hai tiếp tuyến Ax và By nằm cùng phía với nửa đường tròn. M là điểm bất kì trên nửa đường tròn (M khác A và B). Tiếp tuyến tại M của nửa đường tròn cắt Ax và By lần lượt tại E và N.

a) Chứng minh AOME và BOMN là các tứ giác nội tiếp.

b) Chứng minh AE.BN = R2.

c) Kẻ MH vuông góc By. Đường thẳng MH cắt OE tại K. Chứng minh AK MN.

d) Giả sử \[\widehat {MAB} = \alpha \] và MB < MA. Tính diện tích phần tứ giác BOMH ở bên ngoài nửa đường tròn (O) theo R và α.

e) Xác định vị trí của điểm M trên nửa đường tròn (O) để K nằm trên đường tròn (O).

Trả lời:

verified Giải bởi Vietjack

Lời giải

Media VietJack

a) Ta có \(\widehat {OAE} = 90^\circ \) (AE là tiếp tuyến của nửa đường tròn (O)).

Suy ra ba điểm O, A, E cùng thuộc một đường tròn đường kính OE   (1)

Ta có \(\widehat {OME} = 90^\circ \) (ME là tiếp tuyến của nửa đường tròn (O)).

Suy ra ba điểm O, M, E cùng thuộc một đường tròn đường kính OE   (2)

Từ (1), (2), ta được tứ giác AOME nội tiếp đường tròn đường kính OE.

Chứng minh tương tự, ta được tứ giác BOMN nội tiếp đường tròn đường kính ON.

b) Ta có AE, ME là hai tiếp tuyến của đường tròn (O) và AE cắt ME tại E.

Suy ra AE = ME (theo tính chất hai tiếp tuyến cắt nhau).

Chứng minh tương tự, ta được MN = BN.

Ta có AE, ME là hai tiếp tuyến của đường tròn (O) và AE cắt ME tại E.

Suy ra OE là tia phân giác của \(\widehat {AOM}\) hay \(\widehat {AOE} = \widehat {EOM}\).

Chứng minh tương tự, ta được \(\widehat {BON} = \widehat {MON}\).

Đường tròn (O) có AB là đường kính.

Suy ra \(\widehat {AOB} = 180^\circ \).

Khi đó \(\widehat {AOE} + \widehat {EOM} + \widehat {MON} + \widehat {NOB} = 180^\circ \).

Vì vậy \(2\widehat {EOM} + 2\widehat {MON} = 180^\circ \).

Suy ra \(2\left( {\widehat {EOM} + \widehat {MON}} \right) = 180^\circ \).

Do đó \(\widehat {EON} = 90^\circ \).

∆EON vuông tại O có OM là đường cao.

Áp dụng hệ thức lượng trong tam giác vuông, ta có ME.MN = OM2.

Vậy AE.BN = R2.

c) Ta có By AB (By là tiếp tuyến của (O)) và Ax AB (Ax là tiếp tuyến của (O)).

Suy ra By // Ax.

Mà MH By (giả thiết).

Do đó MH Ax hay MK AE.

∆OMA cân tại O (do OM = OA = R) có OE là đường phân giác.

Suy ra OE cũng là đường cao của ∆OMA hay EK AM.

∆AME có MK, EK là hai đường cao cắt nhau tại K.

Suy ra K là trực tâm của ∆AME.

Vậy AK ME hay AK MN.

d) Ta có \(\widehat {MAB}\) là góc nội tiếp chắn  \(\widehat {MOB}\) là góc ở tâm chắn .

Suy ra \(\widehat {MOB} = 2\widehat {MAB} = 2\alpha \)\(\widehat {BON} = \widehat {MON} = \frac{{\widehat {MOB}}}{2} = \alpha \).

Diện tích hình quạt tròn BOM là: \({S_1} = \frac{{\pi {R^2}.2\alpha }}{{360^\circ }}\).

Gọi I là giao điểm của MK và AE.

Xét ∆MNH và ∆MEI, có:

\(\widehat {HMN} = \widehat {EMI}\) (cặp góc đối đỉnh);

\(\widehat {MHN} = \widehat {MIE} = 90^\circ \).

Do đó (g.g).

Suy ra \(\frac{{MN}}{{ME}} = \frac{{MH}}{{MI}} = \frac{{NH}}{{EI}}\)

Khi đó \(\frac{{MN}}{{MH}} = \frac{{ME}}{{MI}} = \frac{{NH}}{{EI}}\)

Vì vậy \(\frac{{MN}}{{MH}}\,\,\left( { = \frac{{EI}}{{MI}}} \right) = \frac{{NH}}{{ME}}\)

Suy ra MN.ME = MH.NH = R2 (kết quả câu b).

Khi đó \({S_{\Delta MNH}} = \frac{1}{2}MH.HN = \frac{1}{2}{R^2}\).

Ta có OM = OB = R và BN = MN (chứng minh trên).

Suy ra OM.MN = OB.BN.

Do đó \({S_{\Delta MNO}} = {S_{\Delta BNO}}\).

Vì vậy \({S_{BOMN}} = 2{S_{\Delta MNO}} = 2.\frac{1}{2}MN.OM = O{M^2}.\tan \alpha = {R^2}.\tan \alpha \).

Vậy diện tích phần tứ giác BOMH ở bên ngoài nửa đường tròn (O) là: \(S = {S_{MNH}} + {S_{BOMN}} - {S_1} = \frac{1}{2}{R^2} + {R^2}.\tan \alpha - \frac{{\pi {R^2}.2\alpha }}{{360^\circ }} = {R^2}\left( {\frac{1}{2} + \tan \alpha - \frac{{2\pi \alpha }}{{360^\circ }}} \right)\).

e) Ta có AK ME (kết quả câu c) và OM ME (ME là tiếp tuyến của (O)).

Suy ra AK // OM.

Mà MK // OA (chứng minh trên).

Do đó tứ giác OAKM là hình bình hành.

Mà OE là tia phân giác của \(\widehat {AOM}\) (chứng minh trên).

Suy ra tứ giác OAKM là hình thoi.

Do đó MK = OM = R.

Vì vậy ∆OMK cân tại M.

Mà OK = R (do K nằm trên (O)).

Suy ra ∆OMK đều.

Khi đó \(\widehat {MOK} = 60^\circ \).

Vì vậy \[\widehat {AOM} = 2\widehat {MOK} = 2.60^\circ = 120^\circ \].

Vậy M nằm trên nửa đường tròn (O) sao cho \(\widehat {AOM} = 120^\circ \) thì K nằm trên đường tròn (O).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn tâm O có đường kính AB = 2R. Từ trung điểm H của đoạn OB, kẻ đường thẳng vuông góc với AB cắt đường tròn (O) tại C và D.

a) Chứng minh HC = HD và tứ giác ODBC là hình thoi.

b) Tính số đo của \[\widehat {BOC}\].

c) Gọi M là điểm đối xứng của O qua B. Chứng minh MC là tiếp tuyến tại C của đường tròn (O). Tính MC theo R.

d) Qua O kẻ đường thẳng vuông góc với OC cắt CD ở I. Chứng minh HI.HD + HB.HM = R2.

Xem đáp án » 18/07/2023 665

Câu 2:

Cho đường tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điểm M bất kì (M khác A), kẻ cát tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC MB, BD MA. Gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB.

1) Chứng minh tứ giác AMBO nội tiếp.

2) Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đường tròn.

3) Chứng minh OI.OM = R2; OI.IM = IA2.

4) Chứng minh OAHB là hình thoi.

5) Chứng minh ba điểm O, H, M thẳng hàng.

6) Tìm quỹ tích của điểm H khi M di chuyển trên đường thẳng d.

Xem đáp án » 18/07/2023 232

Câu 3:

Cho tam giác ABC cân tại A, AM là đường cao. Gọi N là trung điểm AC, D là điểm đối xứng của M qua N.

a) Tứ giác ADCM là hình gì? Vì sao?

b) Chứng minh tứ giác ABMD là hình bình hành và BD đi qua trung điểm O của AM.

c) BD cắt AC tại I. Chứng minh \(DI = \frac{2}{3}OB\).

d) E là hình chiếu của N trên BC. Tam giác ABC cân ban đầu cần thêm điều kiện gì để tứ giác ONEM là hình vuông?

Xem đáp án » 18/07/2023 200

Câu 4:

Thực hiện phép tính: \(C = \left( {\frac{{171717}}{{151515}} + \frac{{171717}}{{353535}} + \frac{{171717}}{{636363}} + \frac{{171717}}{{999999}}} \right):\frac{8}{{11}}\).

Xem đáp án » 18/07/2023 150

Câu 5:

Cho tam giác ABC nhọn (AB > AC), có \(\widehat B = 45^\circ \) và vẽ đường cao AH. Gọi M là trung điểm của AB. P là điểm đối xứng với H qua M.

a) Chứng minh rằng tứ giác AHBP là hình vuông.

b) Vẽ đường cao BK của tam giác ABC. Chứng minh rằng HP = 2MK.

c) Gọi D là giao điểm của AH và BK. Qua D và C vẽ các đường thẳng song song với BC và AH sao cho chúng cắt nhau tại Q. Chứng minh: ba điểm P, K, Q thẳng hàng.

d) Chứng minh các đường thẳng CD, AB và PQ đồng quy.

Xem đáp án » 18/07/2023 143

Câu 6:

Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H, K. Một tiếp tuyến với đường tròn (O) cắt các cạnh AB, AC ở M, N.

a) Cho \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\).

b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.

c) Cho BC = 2a. Tính tích BM.CN.

d) Tiếp tuyến MN ở vị trí nào thì tổng BM + CN nhỏ nhất?

Xem đáp án » 18/07/2023 138

Câu 7:

Cho đường thẳng (d): y = 2x + m và parabol (P): y = x2. Tìm m để (d) cắt (P) tại hai điểm nằm về hai phía của trục tung.

Xem đáp án » 18/07/2023 100

Câu 8:

Cho hình lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của CC’. Khoảng cách từ M đến mặt phẳng (A’BC) bằng

Xem đáp án » 18/07/2023 97

Câu 9:

Tính B = x5 – 15x4 + 16x3 – 29x2 + 13x tại x = 14.

Xem đáp án » 18/07/2023 90

Câu 10:

Cho (d): y = mx – 2 và (P): y = –x2.

a) Chứng minh rằng (d) luôn cắt (P) tại hai điểm nằm về hai phía của trục tung với mọi giá trị của m.

b) Tìm m sao cho y1 + y2 = –8.y1.y2.

Xem đáp án » 18/07/2023 77

Câu 11:

Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân với AB = AC = a, \(\widehat {BAC} = 120^\circ \). Mặt phẳng (AB’C’) tạo với đáy một góc 60°. Tính thể tích V của khối lăng trụ đã cho.

Xem đáp án » 18/07/2023 74

Câu 12:

Giá trị nhỏ nhất của hàm số y = sin2x + sinx – 3 là:

Xem đáp án » 18/07/2023 71

Câu 13:

Cho parabol (P): y = x2 và đường thẳng (d): y = 2x – m (m là tham số). Tìm các giá trị của m để (P) và (d) có điểm chung duy nhất.

Xem đáp án » 18/07/2023 69

Câu 14:

Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân với AB = AC = a, \(\widehat {BAC} = 120^\circ \). Mặt phẳng (A’BC’) tạo với đáy một góc 60°. Thể tích của khối lăng trụ đã cho bằng:

Xem đáp án » 18/07/2023 69

Câu 15:

Cho khối lăng trụ đứng tam giác ABC.A’B’C’ có tất cả các cạnh đều bằng a. Tính thể tích khối tứ diện A’BB’C’?

Xem đáp án » 18/07/2023 66

Câu hỏi mới nhất

Xem thêm »
Xem thêm »