Tìm m nguyên để hệ phương trình sau có nghiệm duy nhất là nghiệm nguyên.
a)
a) Từ phương trình thứ nhất suy ra 2y = m + 1 – mx
Thay vào phương trình thứ hai ta được:
⇔ 4x + m2 + m – m2x = 4m – 2
⇔ x(m2 – 4) = m2 – 3m + 2
⇔ x(m – 2)(m + 2) = (m – 2)(m – 1) (*)
Nếu m = 2 thì (*) ⇔ 0x = 0, phương trình này vô số nghiệm.
Nếu m = -2 thì (*) ⇔ 0x = 12, phương trình này vô nghiệm
Nếu m ≠ 2 và m ≠ -2 thì (*) ⇔
Như vậy trong trường hợp này hệ có nghiệm duy nhất:
Ta cần tìm m ∈ ℤ sao cho x, y ∈ ℤ.
⇔ m + 2 ∈ {-1, 1, 3, -3} ⇔ m ∈ {-3, -1, 1, -5}
Các giá trị này thỏa mãn m ≠ 2 và m ≠ -2.
Vậy m ∈ {-3, -1, 1, -5}
Hình nón có thiết diện qua trục là tam giác đều và có thể tích . Diện tích xung quanh S của hình nón đó là:
Cho đoạn thẳng AB và M là một điểm nằm trên đoạn AB sao cho AM = AB. Giá trị của k để có đẳng thức là:
Cho hình hộp ABCD.A’B’C’D’. Gọi M là điểm trên cạnh AC sao cho AC = 3MC. Lấy N trên cạnh C’D sao cho C’N = xC’D. Với giá trị nào của x thì MN // BD’.
Một hình hộp chữ nhật ABCD.A’B’C’D’ có ba kích thước là 2 cm, 3 cm và 6 cm. Thể tích của khối tứ diện ACB’D’ bằng:
Cho tam giác ABC đều cạnh a. Gọi M là trung điểm BC. Khẳng định nào sau đây đúng?
Cho tứ diện ABCD có I, J lần lượt là trung điểm AC, BC. Gọi K thuộc BD sao cho KD < KB. Gọi E là giao điểm của JK và CD, F là giao điểm của AD và IE. Giao tuyến của (IJK) và (ACD) là:
Trong hệ trục tọa độ Oxy cho hình bình hành OABC, điểm C thuộc trục hoành. Khẳng định nào sau đây đúng?
Cho hình lăng trụ ABC.A'B'C' có thể tích là V. Gọi M là điểm thuộc cạnh CC' sao cho CM = 3C'M. Tính thể tích khối chóp M.ABC