Thứ sáu, 15/11/2024
IMG-LOGO

Câu hỏi:

11/07/2024 88

Cho nửa đường tròn (O; R) đường kính AB, vẽ hai tiếp tuyến Ax, By với nửa đường tròn. Trên tia Ax lấy điểm E (E khác A, AE < R), trên nửa đường tròn lấy điểm M sao cho EM = EA, đường thẳng Em cắt tia By tại F.

a) Chứng minh EF là tiếp tuyến của đường tròn (O).

b) Chứng minh tam giác EOF là tam giác vuông.

c) Chứng minh AM.OE + BM.OF = AB.EF.

Trả lời:

verified Giải bởi Vietjack

a) Xét ΔAOE và ΔMOE có: 

AO = MO = R

AE = ME (gt)

OE chung

ΔAOE = ΔMOE (c.c.c)

 \(\widehat {EAO} = \widehat {EMO}\)

 \(\widehat {EAO} = \widehat {EMO} = 90^\circ \)

EF là tiếp tuyến của (O) (đpcm)

b) EF và By cắt nhau tại F, theo tính chất của 2 tiếp tuyến cắt nhau, ta có:

\(\widehat {MOF} = \widehat {BOF}\)

Mà \(\widehat {MOE} = \widehat {AOE}\) (ΔAOE = ΔMOE)

 \(\widehat {MOE} + \widehat {MOF} = \widehat {AOE} + \widehat {BOF} = \frac{1}{2}.180^\circ = 90^\circ \)

 \(\widehat {EOF} = 90^\circ \)  ΔEOF là tam giác vuông (đpcm)

c) EF và Ax là 2 tiếp tuyến cắt nhau tại E

EA = EM mà OA = OM

OE là trung trực của AM OE AM (1)

ΔAMB nội tiếp đường tròn đường kính AB ΔAMB vuông tại M

MA MB (2)

Từ (1), (2) suy ra OE // MB

 \(\widehat {MOE} = \widehat {OMB}\)(so le trong)

Mà \(\widehat {ABM} = \widehat {OMB}\)(ΔMOB cân tại O)

 \(\widehat {ABM} = \widehat {MOE}\)

Lại có \(\widehat {AMB} = \widehat {EMO} = 90^\circ \)

ΔEMO đồng dạng với ΔAMB (g.g)

 \(\frac{{EM}}{{OE}} = \frac{{AM}}{{AB}}\)  EM.AB = AM.OE (3)

Chứng minh tương tự, ta có ΔFMO đồng dạng với ΔBMA (g.g)

 \(\frac{{FM}}{{FO}} = \frac{{BM}}{{AB}}\)  FM.AB = BM.OF (4)

Từ (3) và (4) suy ra: AM.OE + BM.OF = AB.(EM + FM) = AB.EF (đpcm).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một người quan sát đỉnh của một ngọn núi nhân tạo từ hai vị trí khác nhau của tòa nhà. Lần đầu tiên người đó quan sát đỉnh núi từ tầng trệt với phương nhìn tạo với phương nằm ngang và lần thứ hai người này quan sát tại sân thượng của cùng tòa nhà đó với phương nằm ngang (như hình vẽ). Tính chiều cao ngọn núi biết rằng tòa nhà cao 60 m.

Một người quan sát đỉnh của một ngọn núi nhân tạo từ hai vị trí khác nhau của tòa nhà (ảnh 1)

Xem đáp án » 01/09/2023 208

Câu 2:

Có bao nhiêu số gồm 5 chữ số phân biệt có mặt đủ ba chữ số 1, 2, 3.

Xem đáp án » 01/09/2023 130

Câu 3:

Cho tam giác ABC vuông tại A, AC = b, AB = c. Lấy điểm M trên cạnh BC sao cho \(\widehat {BAM} = 30^\circ \).Tính tỉ số \(\frac{{MB}}{{MC}}\).

Xem đáp án » 01/09/2023 130

Câu 4:

Một hồ bơi dạng hình hộp chữ nhật có kích thước trong lòng hồ là: Chiều dài 12m, chiều rộng 5m, chiều sâu 3m.

a) Tính thể tích của hồ bơi.

b) Tính diện tích cần lát gạch bên trong lòng hồ (mặt đáy và 4 mặt xung quanh).

c) Biết gạch hình vuông dùng để lát hồ bơi có cạnh 50cm. Hỏi cần mua ít nhất bao nhiêu viên gạch để lát bên trong hồ bơi.

Xem đáp án » 01/09/2023 126

Câu 5:

Cho hình vuông ABCD. Trên cạnh các AD, DC lần lượt lấy các điểm E, F sao cho AE = DF. Gọi M, N lần lượt là trung điểm của EF, BF.

a) Chứng minh các tam giác ADF và BAE bằng nhau.

b) Chứng minh MN vuông góc AF.

Xem đáp án » 01/09/2023 122

Câu 6:

Bác Ngọc thực hiện chế độ ăn kiêng với yêu cầu tối thiểu hằng ngày qua thức uống là 300 ca – lo, 36 đơn vị vitamin A và 90 đơn vị vitamin C. Một cốc đồ uống ăn kiêng thứ nhất cung cấp 60 ca – lo, 12 đơn vị vitamin A và 10 đơn vị vitamin C. Một cốc đồ uống ăn kiêng thứ hai cung cấp 60 ca – lo, 6 đơn vị vitamin A và 30 đơn vị vitamin C.

a) Viết hệ bất phương trình mô tả số lượng cốc cho đồ uống thứ nhất và thứ hai mà bác Ngọc nên uống mỗi ngày để đáp ứng nhu cầu cần thiết đối với số ca – lo và số đơn vị vitamin hấp thụ.

b) Chỉ ra hai phương án mà bác Ngọc có thể chọn lựa số lượng cốc cho đồ uống thứ nhất và thứ hai nhằm đáp ứng nhu cầu cần thiết đối với số ca – lo và số đơn vị vitamin hấp thụ.

Xem đáp án » 01/09/2023 112

Câu 7:

Tính giá trị: 36.4 – 4(82 – 7.11)2 : 4 – 20160.

Xem đáp án » 01/09/2023 110

Câu 8:

Cho tam giác ABC đều cạnh bằng a, trọng tâm G. Tích vô hướng của hai vectơ \(\overrightarrow {BC} .\overrightarrow {CG} \)

Xem đáp án » 01/09/2023 94

Câu 9:

Một trường trung học phổ thông có 4 học sinh giỏi khối 12, có 5 học sinh giỏi khối 11, có 6 học sinh giỏi khối 10. Hỏi có bao nhiêu cách sắp xếp 15 học sinh trên thành một hàng ngang để đón đoàn đại biểu, nếu các học sinh ở cùng một khối thì xếp gần nhau.

Xem đáp án » 01/09/2023 94

Câu 10:

Cho tam giác ABC có AB = 6cm, AC = 8cm. Gọi H là chân đường vuông góc kẻ từ B đến tia phân giác của Â, M là trung điểm của BC. Tính HM?

Xem đáp án » 01/09/2023 90

Câu 11:

Giả sử ta dùng thước và compa vẽ hình thoi ABCD, biết AB = 5cm và AC = 8cm.

Xem đáp án » 01/09/2023 90

Câu 12:

Cho hình thang cân ABCD có đáy lớn CD = 3, đáy nhỏ AB = 1 và AD = BC = \(\sqrt 5 \), gọi I là giao điểm của hai đường chéo hình thang, gọi H là trực tâm của tam giác BDC. Phân tích vectơ \(\overrightarrow {IH} \) theo vectơ \(\overrightarrow {AB} ,\overrightarrow {AD} \).

Xem đáp án » 01/09/2023 86

Câu 13:

Có bao nhiêu số tự nhiên có ba chữ số phân biệt sao cho tổng các chữ số là lẻ?

Xem đáp án » 01/09/2023 82

Câu 14:

Một trang trại nuôi ong mật mua 75 chiếc can loại 10 lít để đựng mật ong chuẩn bị cho vụ thu hoạch vào vụ thu hoạc số mật ong tăng gấp đôi so với dự kiến vậy để đựng hết số mật ong thu hoạch được trại nuôi ong cần mấy can 10 lít.

Xem đáp án » 01/09/2023 82

Câu 15:

Để kích cầu tiêu dùng sau mùa dịch Covid –19 lần thứ 4, một cửa hàng giày có chương trình khuyến mãi như sau:

1. Giảm giá 30% so với giá niêm yết cho tất cả sản phẩm của cửa hàng.

2. Nếu khách hàng có thể thành viên của của hàng thì được giảm thêm 20% so với giá đã giảm. Bình có thể thành viên của cửa hàng trên và mua một đôi giày có giá niêm yết là 2 triệu đồng.

Hỏi Bình phải trả cho cửa hàng bao nhiêu tiền?

Xem đáp án » 01/09/2023 82

Câu hỏi mới nhất

Xem thêm »
Xem thêm »