Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \({\log _{\sqrt 2 }}\left( {x - 1} \right) = {\log _2}\left( {mx - 8} \right)\) có hai nghiệm thực phân biệt?
A.3
B. vô số
C. 4
D. 5
Đáp án đúng là: A
Điều kiện: \(\left\{ {\begin{array}{*{20}{l}}{x > 1}\\{mx > 8}\end{array}} \right.\)
Ta có: \({\log _{\sqrt 2 }}\left( {x - 1} \right) = {\log _2}\left( {mx - 8} \right)\) (1)
\( \Leftrightarrow {\log _2}{(x - 1)^2} = {\log _2}(mx - 8)\)
\(\begin{array}{l} \Leftrightarrow {(x - 1)^2} = mx - 8\\ \Leftrightarrow {x^2} - 2x + 9 = m\\ \Leftrightarrow x - 2 + \frac{9}{x} = m{\rm{ }}\left( 2 \right)\end{array}\)
Phương trình (1) có 2 nghiệm thực phân biệt
⇔ Phương trình (2) có 2 nghiệm thực phân biệt lớn hơn 1
Xét hàm số \(f(x) = x - 2 + \frac{9}{x},x > 1\) có \(f'(x) = 1 - \frac{9}{{{x^2}}},f'(x) = 0 \Leftrightarrow x = 3\)
Bảng biến thiên:
Phương trình (2) có 2 nghiệm thực phân biệt lớn hơn 1 \( \Leftrightarrow 4 < m < 8\)
Mà \(m \in \mathbb{Z} \Rightarrow m \in \{ 5;6;7\} \)
Do đó 3 giá trị của m thỏa mãn
Vậy ta chọn đáp án A.
Từ một hộp chứa sáu quả cầu trắng và bốn quả cầu đen, lấy ngẫu nhiên đồng thời bốn quả, tính xác suất sao cho:
a) Bốn quả lấy ra cùng màu;
b) Có ít nhất một quả màu trắng.
Trong mặt phẳng (Oxy) cho A(1; 2), B(4; 1), C(5; 4). Tính \(\widehat {BAC}\).
Cho tam giác ABC và đặt \(\overrightarrow a = \overrightarrow {BC} ,\overrightarrow b = \overrightarrow {AC} \). Cặp vectơ nào sau đây cùng phương:
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân tại A, AB = AC = a và \[{\rm{AA}}' = a\sqrt 2 \]. Thể tích khối cầu ngoại tiếp hình tứ diện AB’A’C là:
Cho phương trình \(\log _2^2x - 2{\log _2}x - \sqrt {m + {{\log }_2}x} = m\) (*). Có bao nhiêu giá trị nguyên của tham số m ∈ [–2019; 2019] để phương trình (*) có nghiệm?
Với những giá trị nào của m thì đồ thị các hàm số y = 2x + (3 + m) và y = 3x + (5 – m) cắt nhau tại một điểm trên trục tung?
Cho hình bình hành ABCD tâm O. Khi đó \(\overrightarrow {OB} - \overrightarrow {OA} \) bằng:
Cho tanα = 2. Tính giá trị của biểu thức \(G = \frac{{2\sin \alpha + cos\alpha }}{{cos\alpha - 3\sin \alpha }}\).
Bất phương trình \({\log _{\frac{2}{3}}}\left( {2{{\rm{x}}^2} - x - 1} \right) > 0\) có tập nghiệm là (a; b) ∪ (c; d). Tính tổng a + b + c + d.
Cho tam giác ABC có thể xác định được bao nhiêu vectơ (khác vectơ không) có điểm đầu và điểm cuối là đỉnh A, B, C?