Tìm các số tự nhiên n để phân số có giá trị là số nguyên.
Đáp án đúng là: C
Ta có .
Để có giá trị là số nguyên thì là số nguyên.
Vậy n ∈ Ư(2) = {–2; –1; 1; 2}.
Mà n là số tự nhiên nên n ∈ {1; 2}.
Cho tập H = {6; 2; 7}. Có thể viết được tất cả bao nhiêu phân số có tử và mẫu thuộc tập H và tử khác mẫu?
Cho phân số (n ∈ ℤ), tìm tất cả các giá trị của n để A là phân số.