Cho ΔABC vuông tại A, trung tuyến AM. Khẳng định nào sau đây là đúng?
A.
B.
C.
Hướng dẫn giải:
Đáp án đúng là: C
Ta có ΔABC vuông tại A và trung tuyến AM ứng với cạnh huyền BC nên theo kết quả của Ví dụ 2, ta có hay BC = 2AM.
Xét ΔABC có BC < AB + AC (bất đẳng thức tam giác)
Suy ra 2AM < AB + AC hay
Cho tam giác ABC cân tại A. Đường phân giác của góc A cắt đường trung tuyến BD tại K. Gọi I là trung điểm của AB. Khẳng định nào sau đây là sai?
Cho ΔABC cân tại A có hai đường trung tuyến BM, CN cắt nhau tại G. Tam giác GBC là tam giác
Cho tam giác ABC cân tại A. Vẽ AH ⊥ BC. Trên tia đối của tia HA lấy điểm D sao cho HD = HA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. Điểm C là trọng tâm của tam giác nào?
Cho tam giác ABC có hai đường trung tuyến BD; CE sao cho BD = CE. Khi đó tam giác ABC là tam giác
Cho ΔABC có hai đường trung tuyến BN, CP vuông góc với nhau tại G. Biết độ dài BC = 5cm. Độ dài AG là:
Cho tam giác ABC, AM là đường trung tuyến. Biết AM = MB = MC. Cho biết tam giác ABC là tam giác gì?
Cho G là trọng tâm của tam giác đều ABC. Khẳng định nào sau đây là đúng?