Cho G là trọng tâm của tam giác đều ABC. Khẳng định nào sau đây là đúng?
A. GA = GB = GC;
B. GA = GB > GC;
C. GA < GB < GC;
Hướng dẫn giải:
Đáp án đúng là: A
Các tia AG, BG và CG cắt BC, AC, AB lần lượt tại D, E, F thì D, E, F theo thứ tự là trung điểm của BC, AC, AB.
Mà BC = AC = AB (do tam giác ABC đều).
Do đó BD = DC = CE = EA = AF = FB.
Xét ΔAEB và ΔAFC có:
AB = AC (chứng minh trên);
là góc chung
AE = AF (chứng minh trên)
Do đó ΔAEB = ΔAFC (c.g.c).
Suy ra BE = CF (hai cạnh tương ứng) (1)
Chứng minh tương tự, ta có ΔBEC = ΔADC (c.g.c).
Suy ra BE = AD (hai cạnh tương ứng) (2)
Từ (1) và (2) ta có AD = BE = CF (3)
Do G là trọng tâm của ΔABC nên ta có: (4)
Từ (3) và (4) suy ra GA = GB = GC.
Cho tam giác ABC cân tại A. Đường phân giác của góc A cắt đường trung tuyến BD tại K. Gọi I là trung điểm của AB. Khẳng định nào sau đây là sai?
Cho ΔABC cân tại A có hai đường trung tuyến BM, CN cắt nhau tại G. Tam giác GBC là tam giác
Cho tam giác ABC cân tại A. Vẽ AH ⊥ BC. Trên tia đối của tia HA lấy điểm D sao cho HD = HA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. Điểm C là trọng tâm của tam giác nào?
Cho ΔABC vuông tại A, trung tuyến AM. Khẳng định nào sau đây là đúng?
Cho tam giác ABC có hai đường trung tuyến BD; CE sao cho BD = CE. Khi đó tam giác ABC là tam giác
Cho ΔABC có hai đường trung tuyến BN, CP vuông góc với nhau tại G. Biết độ dài BC = 5cm. Độ dài AG là:
Cho tam giác ABC, AM là đường trung tuyến. Biết AM = MB = MC. Cho biết tam giác ABC là tam giác gì?