Cho hai điểm A(–2; 1) và B(3; 5). Khẳng định nào sau đây là đúng về đường tròn (C) có đường kính AB?
A. Đường tròn (C) có phương trình là x2 + y2 + x + 6y – 1 = 0;
B. Đường tròn (C) có tâm
C. Đường tròn (C) có bán kính
Hướng dẫn giải:
Đáp án đúng là: B
Tâm đường tròn (C) là trung điểm của AB. Khi đó .
Với A(–2; 1) và B(3; 5) ta có . Do đó
Bán kính đường tròn là:
Từ đó ta có thể chọn luôn phương án B.
Cho đường cong (Cm): x2 + y2 – 8x + 10y + m = 0. Với giá trị nào của m thì (Cm) là đường tròn có bán kính bằng 7?
Trong mặt phẳng tọa độ Oxy, tâm I và bán kính R của đường tròn (C): x2 + y2 – 2x + 6y – 8 = 0 lần lượt là
Tâm đường tròn (C): x2 + y2 – 10x + 1 = 0 cách trục Oy một khoảng bằng
Trong mặt phẳng tọa độ Oxy, cho đường tròn x2 + y2 – 2x + 6y – 1 = 0. Tâm của đường tròn (C) có tọa độ là
Trong mặt phẳng tọa độ Oxy, bán kính của đường tròn (C): 3x2 + 3y2 – 6x + 9y – 9 = 0 là
Trong mặt phẳng tọa độ Oxy, cho đường tròn 2x2 + 2y2 – 8x + 4y – 1 = 0 có tâm là
Trong mặt phẳng tọa độ Oxy, đường tròn x2 + y2 – 10y – 24 = 0 có bán kính bằng bao nhiêu?
Trong mặt phẳng tọa độ Oxy, đường tròn (x – 3)2 + (y + 7)2 = 9 có tâm và bán kính là
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + y2 + 2(2x + 3y – 6) = 0 có tâm là