Một hình nón có diện tích đáy bằng và có chiều cao gấp ba lần bán kính đáy. Tính thể tích của hình nón đó.
Gọi bán kính đáy của hình nón là R
Do diện tích của đáy hình nón là
Theo giả thiết chiều cao của hình nón gấp 3 lần bán kính đáy nên chiều cao của hình nón là:
Thể tích hình nón là:
Vậy thể tích hình nón là \
Cho tam giác ABC nhọn, nội tiếp đường tròn (O;R) . Kẻ AH vuông góc với BC tại H, HK vuông góc với AB tại K và HI vuông góc với AC tại I.
a) Chứng minh tứ giác AKHI nội tiếp.
b) Gọi E là giao điếm của AH với KI Chứng minh rằng
c) Chứng minh KJ vuông góc với AO.
d) Giả sử điểm A và đường tròn (O;R) cố định, còn dây cung BC thay đổi sao cho Xác định vị trí của dây cung BC sao cho tam giác ABC có diện tích lớn nhất.
Cho hệ phương trình (với m là tham số).
1) Giải hệ phương trình vời m = 2.
2) Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn
Cho hai biểu thức và (với
1) Tính giá tri biểu thức Q với x = 4.
2) Chứng minh rằng
3) Tìm tất cả các giá trị của x để P nhận giá trị là các số nguyên.
Trong mặt phẳng tọa độ Oxyz cho parabol và đường thẳng (với m là tham số).
1) Tìn m để (d) đi qua điểm A (2;8).
2) Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ thỏa mãn