Đọc đoạn trích sau đây và trả lời câu hỏi:
Từ đây, như đã tìm đúng đường về, sông Hương vui tươi hẳn lên giữa những biền bãi xanh biếc của vùng ngoại ô Kim Long, kéo một nét thẳng thực yên tâm theo hướng tây nam - đông bắc, phía đó, nơi cuối đường, nó đã nhìn thấy chiếc cầu trắng của thành phố in ngần trên nền trời, nhỏ nhắn như những vành trăng non. Giáp mặt thành phố ở Cồn Giã Viên, sông Hương uốn một cánh cung rất nhẹ sang đến Cồn Hến; đường cong ấy làm cho dòng sông mềm hẳn đi, như một tiếng “vâng” không nói ra của tình yêu. Và như vậy, giống như sông Xen (Seine) của Pa-ri (Paris), sông Đa-nuýp (Danube) của Bu-đa-pét (Budapest); sông Hương nằm ngay giữa lòng thành phố yêu quý của mình; Huế trong tổng thể vẫn giữ nguyên dạng một đô thị cổ, trải dọc hai bờ sông. Đầu và cuối ngõ thành phố, những nhánh sông đào mang nước sông Hương toả đi khắp phố thị, với những cây đa, cây cừa cổ thụ toả vầng lá u sầm xuống những xóm thuyền xúm xít; từ những nơi ấy, vẫn lập loè trong đêm sương những ánh lửa thuyền chài của một linh hồn mô tê xưa cũ mà không một thành phố hiện đại nào còn nhìn thấy được.
(Ai đã đặt tên cho dòng sông? – Hoàng Phủ Ngọc Tường)
Đoạn trích trên miêu tả hình ảnh sông Hương ở không gian nào?
Đoạn trích miêu tả hình ảnh sông Hương trong lòng thành phố Huế. Căn cứ vào các chi tiết được nhắc tới trong đoạn trích: nhìn thấy chiếc cầu trắng của thành phố, nhắc đến các địa danh trong thành phố Huế như Cồn Giã Viên, Cồn Hến, đặc biệt chú ý câu văn khẳng định sông Hương nằm ngay giữa lòng thành phố yêu quý của mình. Chọn C.
Phương trình \({x^3} - 6mx + 5 = 5{m^2}\) có 3 nghiệm phân biệt lập thành cấp số cộng khi
Giả sử một vật dao động điều hòa xung quanh vị trí cân bằng theo phương trình \(x = 2\cos \left( {5t - \frac{\pi }{6}} \right).\) Ở đây, thời gian \(t\) tính bằng giây và quãng đường \(x\) tính bằng centimét. Hỏi trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng bao nhiêu lần?
Hội khỏe Phù Đổng của trường Trần Phú, lớp 10A có 45 học sinh, trong đó có 25 học sinh thi điền kinh, 20 học sinh thi nhảy xa, 15 học sinh thi nhảy cao, 7 em không tham gia môn nào, 5 em tham gia cả 3 môn. Hỏi số em tham gia chỉ một môn trong ba môn trên là bao nhiêu?
Tiếp tuyến với đồ thị hàm số \(y = - \frac{1}{4}{x^4} + 2{x^2} + 3\) tại điểm cực tiểu của đồ thị cắt đồ thị ở \[A,\,\,B\] khác tiếp điểm. Độ dài đoạn thẳng \[AB\] là
Trong không gian với hệ trục tọa độ \[Oxyz,\] cho ba điểm \(A\left( {1\,;\,\,0\,;\,\,0} \right),\,\,C\left( {0\,;\,\,0\,;\,\,3} \right),\)\(B\left( {0\,;\,\,2\,;\,\,0} \right).\) Tập hợp các điểm \(M\) thỏa mãn MA2 = MB2 + MC2 là mặt cầu có bán kính là
Có bao nhiêu số nguyên của \(m\) thuộc đoạn \(\left[ { - 100\,;\,\,100} \right]\) để đồ thị hàm số \(y = \frac{1}{{\left( {x - m} \right)\sqrt {2x - {x^2}} }}\) có đúng hai đường tiệm cận?
Cho hàm số \(f\left( x \right) = {x^3} - 3x + 1.\) Có bao nhiêu giá trị nguyên của \(m\) để giá trị nhỏ nhất của hàm số \[y = \left| {f\left( {2\sin x + 1} \right) + m} \right|\] không vượt quá 10?
Một hộp đựng 26 tấm thẻ được đánh số từ 1 đến 26. Bạn Hải rút ngẫu nhiên cùng một lúc ba tấm thẻ. Hỏi có bao nhiêu cách rút sao cho bất kỳ hai trong ba tấm thẻ lấy ra đó có hai số tương ứng ghi trên hai tấm thẻ luôn hơn kém nhau ít nhất 2 đơn vị?
Trong không gian với hệ trục tọa độ \[Oxyz,\] cho tứ diện \[ABCD\] có \(A\left( {2\,;\,\, - 1\,;\,\,1} \right),\)\(B\left( {3\,;\,\,0\,;\,\, - 1} \right),\)\(C\left( {2\,;\,\, - 1\,;\,\,3} \right),\,\,D \in Oy\) và có thể tích bằng 5. Tổng tung độ của các điểm \(D\) là
Cho hàm số \(f\left( x \right) = m\sqrt {x - 1} \) (\(m\) là tham số thực khác 0). Gọi \({m_1},\,\,{m_2}\) là hai giá trị của \(m\) thỏa mãn \[{\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) + {\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = {m^2} - 10.\] Giá trị của \({m_1} + {m_2}\) bằng
Cho hình chóp \[S.ABC\] có đáy \[ABC\] là tam giác vuông cân tại \(A,\,\,AB = 2a,\,\,SA\) vuông góc với mặt đáy và góc giữa \[SB\] và mặt đáy bằng \(60^\circ .\) Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right).\) Giá trị \(\cos \alpha \) bằng
Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng \(d:3x - 4y - 1 = 0\) và điểm \(I\left( {1\,;\,\, - 2} \right).\) Gọi \((C)\) là đường tròn có tâm I và cắt đường thẳng \(d\) tại hai điểm \[A\] và \[B\] sao cho tam giác \[IAB\] có diện tích bằng 4. Phương trình đường tròn \((C)\) là
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) là \(f'\left( x \right) = x{\left( {x - 1} \right)^2}\left( {x + 2} \right).\) Khi đó, hàm số \(y = f\left( { - 2x} \right)\) đạt cực đại tại
Hỗn hợp E chứa ba ester mạch hở (không chứa chức khác). Đốt cháy hoàn toàn m gam E cần dùng vừa đủ 1,165 mol \[{O_2}.\]Mặt khác, thủy phân hoàn toàn lượng E trên bằng NaOH thu được hỗn hợp các muối và alcohol. Đốt cháy hoàn toàn lượng muối thu được 11,66 gam \[N{a_2}C{O_3}\]thu được 0,31 mol \[C{O_2},\]còn nếu đốt cháy hoàn toàn lượng alcohol thu được thì cần vừa đủ 0,785 mol \[{O_2}\]thu được 0,71 mol \[{H_2}O.\] Giá trị của m là: