Cho tam giác ABC có \(AB = 4\,,\,\,AC = 2\,,\,\,\widehat {CAB} = 120^\circ \). Gọi \[M\] là điểm thay đổi thuộc mặt cầu tâm \[B,\] bán kính 2. Giá trị nhỏ nhất của \(MA + 2MC\) là \(a\sqrt b \). Tính \(a + b\).
Đáp án: ……….
Gọi E là giao điểm của AB với mặt cầu tâm B bán kính 2 và F là trung điểm của EB suy ra E là trung điểm của AB, \(BE = BM = 2\).
Xét \(\Delta AFC\) có:
\(F{C^2} = A{C^2} + A{F^2} - 2AC.AF.\cos \widehat {CAB} = {2^2} + {3^2} - 2.2.3.\cos 120^\circ = 19\)\( \Rightarrow FC = \sqrt {19} .\)
Xét \[\Delta BFM\] và \(\Delta BMA\) có: \(\widehat {ABM}\) chung, \(\frac{{BF}}{{BM}} = \frac{{BM}}{{BA}} = \frac{1}{2}\).
Do đó .
Khi đó \(MA + 2MC = 2\left( {MF + MC} \right) \ge 2FC = 2\sqrt {19} \Rightarrow MA + 2MC \ge 2\sqrt {19} \).
Điểm \[F\] nằm trong mặt cầu \[\left( S \right)\] và \[C\] nằm ngoài mặt cầu \[\left( S \right)\].
Dấu xảy ra khi \[M\] là giao điểm của \[FC\] và \[\left( S \right)\].
Do đó giá trị nhỏ nhất của biểu thức \(MA + 2MC\) là \(2\sqrt {19} \).
Suy ra \(a = 2,\,\,b = 19 \Rightarrow a + b = 21\).
Đáp án: 21.
Đọc đoạn trích sau và trả lời câu hỏi:
Làm chi để tiếng về sau,
Nghìn năm ai có khen đâu Hoàng Sào!
Sao bằng lộc trọng quyền cao,
Công danh ai dứt lối nào cho qua?
Nghe lời nàng nói mặn mà.
(Truyện Kiều – Nguyễn Du)
Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = - {x^4} + 6{x^2} + mx\) có ba điểm cực trị?
Đáp án: ……….
Đọc đoạn trích sau đây và trả lời câu hỏi:
Chúng được mẹ cho bú sữa, bồng ẵm, dỗ dành, tắm giặt, ru ngủ, cho ăn uống, chăm sóc rất nhiều khi ốm đau…Với việc nhận thức thông qua quá trình bé tự quan sát, học hỏi tự nhiên hàng ngày và ảnh hưởng đặc biệt các đức tính của người mẹ, đã hình thành dần dần bản tính của đứa con theo kiểu “mưa dầm, thấm lâu”. Ngoài ra, những đứa trẻ thường là thích bắt chước người khác thông qua những hành động của người gần gũi nhất chủ yếu là người mẹ. Chính người phụ nữ là người chăm sóc và giáo dục con cái chủ yếu trong gia đình.
(Trần Thanh Thảo)