Cho tam giác ABC có \(AB = 4\,,\,\,AC = 2\,,\,\,\widehat {CAB} = 120^\circ \). Gọi \[M\] là điểm thay đổi thuộc mặt cầu tâm \[B,\] bán kính 2. Giá trị nhỏ nhất của \(MA + 2MC\) là \(a\sqrt b \). Tính \(a + b\).
Đáp án: ……….
Gọi E là giao điểm của AB với mặt cầu tâm B bán kính 2 và F là trung điểm của EB suy ra E là trung điểm của AB, \(BE = BM = 2\).
Xét \(\Delta AFC\) có:
\(F{C^2} = A{C^2} + A{F^2} - 2AC.AF.\cos \widehat {CAB} = {2^2} + {3^2} - 2.2.3.\cos 120^\circ = 19\)\( \Rightarrow FC = \sqrt {19} .\)
Xét \[\Delta BFM\] và \(\Delta BMA\) có: \(\widehat {ABM}\) chung, \(\frac{{BF}}{{BM}} = \frac{{BM}}{{BA}} = \frac{1}{2}\).
Do đó .
Khi đó \(MA + 2MC = 2\left( {MF + MC} \right) \ge 2FC = 2\sqrt {19} \Rightarrow MA + 2MC \ge 2\sqrt {19} \).
Điểm \[F\] nằm trong mặt cầu \[\left( S \right)\] và \[C\] nằm ngoài mặt cầu \[\left( S \right)\].
Dấu xảy ra khi \[M\] là giao điểm của \[FC\] và \[\left( S \right)\].
Do đó giá trị nhỏ nhất của biểu thức \(MA + 2MC\) là \(2\sqrt {19} \).
Suy ra \(a = 2,\,\,b = 19 \Rightarrow a + b = 21\).
Đáp án: 21.
Giả sử rằng mặt trong của trụ cầu là một parabol như vẽ, biết độ rộng của mặt đường khoảng \[43{\rm{ }}m.\] Một người đã dùng dây dọi (không giãn) gắn lên thành trụ cầu ở vị trí \[B\] và điều chỉnh độ dài dây dọi để quả nặng vừa chạm đất (khi lặng gió), sau đó đo được chiều dài đoạn dây dọi sử dụng là \[1,87{\rm{ }}m\] và khoảng cách từ chân trụ cầu đến quả nặng là \[20{\rm{ }}cm.\] Nếu dùng dữ liệu tự thu thập được và tính toán theo cách ở trên thì người này sẽ ước tính được độ cao từ đỉnh vòm phía trong một trụ của cầu Nhật Tân tới mặt đường là bao nhiêu mét (làm tròn đến hàng đơn vị)?
Đáp án: ……….
Đồ thị dao động nào sau đây biểu diễn sự phụ thuộc của chu kì T vào khối lượng m của con lắc lò xo đang dao động điều hòa?
Đọc đoạn trích sau và trả lời câu hỏi:
Làm chi để tiếng về sau,
Nghìn năm ai có khen đâu Hoàng Sào!
Sao bằng lộc trọng quyền cao,
Công danh ai dứt lối nào cho qua?
Nghe lời nàng nói mặn mà.
(Truyện Kiều – Nguyễn Du)