Hai con lắc lò xo cấu tạo giống nhau, có cùng chiều dài tự nhiên bằng 80 cm và đầu cố định gắn chung tại một điểm O. Con lắc (I) nằm ngang trên mặt bàn nhẵn. Con lắc (II) treo thẳng đứng cạnh mép bàn như hình vẽ. Kích thích cho hai con lắc dao động điều hòa tự do. Chọn mốc thế năng đàn hồi của mỗi con lắc tại các vị trí tương ứng của vật lúc lò xo có chiều dài tự nhiên. Thế năng đàn hồi các con lắc phụ thuộc thời gian theo quy luật được mô tả bởi đồ thị hình vẽ.
Biết tại thời điểm t = 0, cả hai lò xo đều dãn và \({t_2} - {t_1} = \frac{{\rm{\pi }}}{{12}}\;{\rm{s}}{\rm{.}}\) Lấy \({\rm{g}} = 10\;\)m/s2. Tại thời điểm \({\rm{t}} = \frac{{\rm{\pi }}}{{10}}\;{\rm{s}}\), khoảng cách hai vật dao động mạch có giá trị bằng bao nhiêu cm? Làm tròn đến số thập phân thứ nhất.
Đáp án: ……….
Ta có hình vẽ, chọn hệ quy chiếu như hình vẽ:
Đường (I) cho biết thế năng đàn hồi của con lắc lò xo nằm ngang.
Thế năng cực đại ứng với 4 đơn vị: \({{\rm{W}}_1} = \frac{1}{2}{\rm{kA}}_1^2\).
Đường (II) là thế năng đàn hồi của con lắc lò xo treo thẳng đứng. Vì tại vị trí cân bằng lò xo đã dãn một đoạn \(\Delta {\ell _0}\) nên tại vị trí lò xo dãn nhiều nhất, thế năng đàn hồi cực đại lớn nhất ứng với 9 đơn vị: \({{\rm{W}}_{2 + }} = \frac{1}{2}{\rm{k}}{\left( {{\rm{A}} + \Delta {\ell _0}} \right)^2}\)
Tại vị trí biên trên (biên âm) thì thế năng đàn hồi ứng với 1 đơn vị: \({{\rm{W}}_{2 - }} = \frac{1}{2}{\rm{k}}{\left( {{\rm{A}} - \Delta {\ell _0}} \right)^2}\)
Ta có tỉ số: \(\left\{ \begin{array}{l}\frac{{{{\rm{W}}_{2 + }}}}{{{{\rm{W}}_{2 - }}}} = \frac{9}{1} = \frac{{{{\left( {{{\rm{A}}_2} + \Delta {\ell _0}} \right)}^2}}}{{{{\left( {\;{{\rm{A}}_2} - \Delta {\ell _0}} \right)}^2}}} \Leftrightarrow \frac{{\left( {{{\rm{A}}_2} + \Delta {\ell _0}} \right)}}{{\left( {{{\rm{A}}_2} - \Delta {\ell _0}} \right)}} = 3 \Rightarrow {{\rm{A}}_2} = 2\Delta {\ell _0}\\\frac{{{{\rm{W}}_{2 + }}}}{{{{\rm{W}}_1}}} = \frac{9}{4} = \frac{{{{\left( {{{\rm{A}}_2} + \Delta {\ell _0}} \right)}^2}}}{{\;{\rm{A}}_1^2}} \Leftrightarrow \frac{{{{\rm{A}}_2} + \Delta {\ell _0}}}{{\;{{\rm{A}}_1}}} = \frac{3}{2} \Leftrightarrow \frac{{3\Delta {\ell _0}}}{{\;{{\rm{A}}_1}}} = \frac{3}{2} \Rightarrow {{\rm{A}}_1} = 2\Delta {\ell _0} = {{\rm{A}}_2}\end{array} \right.\)
Tại thời điểm ban đầu \(t = 0\), ta thấy cả hai vật đều đang ở biên dương. Thời điểm \({t_1}\) là thời điểm vật của lò xo treo thẳng đứng đi qua vị trí lò xo không dãn.
Thời gian từ \({\rm{t}} = 0\) đến \({{\rm{t}}_1}\) là \({{\rm{t}}_1} = \frac{{\rm{T}}}{3}\)
Thời điểm \({t_2}\) là thời điểm vật của lò xo nằm ngang đi qua vị trí cân bằng lần thứ 2. Thời gian từ \({\rm{t}} = 0\) đến \({{\rm{t}}_2}\) là \({{\rm{t}}_2} = \frac{3}{4}\;{\rm{T}}\).
Khoảng thời gian \({{\rm{t}}_2} - {{\rm{t}}_1} = \frac{{\rm{\pi }}}{{12}} \Rightarrow \frac{3}{4}\;{\rm{T}} - \frac{{\rm{T}}}{3} = \frac{5}{{12}}\;{\rm{T}} = \frac{{\rm{\pi }}}{{12}} \Rightarrow {\rm{T}} = \frac{{\rm{\pi }}}{5}(\;{\rm{s}})\)
Tần số góc của hai con lắc là như nhau vì chúng đều dao động tự do và có cùng độ cứng, vật nặng cùng khối lượng:
\({\rm{\omega }} = \sqrt {\frac{{\rm{k}}}{{\rm{m}}}} = \sqrt {\frac{{\rm{g}}}{{\Delta {\ell _0}}}} \Rightarrow {\rm{\omega }} = \frac{{2{\rm{\pi }}}}{{\rm{T}}} = \frac{{2{\rm{\pi }}}}{{\frac{{\rm{\pi }}}{5}}} = 10 = \sqrt {\frac{{\rm{g}}}{{\Delta {\ell _0}}}} \Rightarrow \Delta {\ell _0} = 0,1\;{\rm{m}} = 10\;{\rm{cm}} \Rightarrow {{\rm{A}}_1} = {{\rm{A}}_2} = 20\;{\rm{cm}}.\)
Sau thời gian \({\rm{t}} = {\rm{t}} = \frac{{\rm{\pi }}}{{10}}\;{\rm{s}} = \frac{{\rm{T}}}{2}\) thì hai vật đều đang ở biên âm.
Khoảng cách giữa hai vật lúc này là:
\({\rm{d}} = \sqrt {{{\left( {\ell - {{\rm{A}}_1}} \right)}^2} + {{\left( {\ell + \Delta {\ell _0} - {{\rm{A}}_2}} \right)}^2}} = \sqrt {{{(80 - 20)}^2} + {{(80 + 10 - 20)}^2}} = 92,2\;{\rm{cm}}{\rm{. }}\)Đáp án. 92,2
Cho hình chóp \[S.ABC\] có đáy \[ABC\] là tam giác đều, \(SA \bot \left( {ABC} \right).\) Mặt phẳng \(\left( {SBC} \right)\) cách \(A\) một khoảng bằng \(a\) và hợp với mặt phẳng \(\left( {ABC} \right)\) góc \(30^\circ .\) Thể tích của khối chóp \[S.ABC\] bằng
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}.\) Hàm số \(g\left( x \right) = f'\left( {2x + 3} \right) + 2\) có đồ thị là một parabol với tọa độ đỉnh \(I\left( {2\,;\,\, - 1} \right)\) và đi qua điểm \(A\left( {1\,;\,\,2} \right).\) Hỏi hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng nào dưới đây?
Ông A dự định sử dụng hết 6,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu mét khối (kết quả làm tròn đến hàng phần trăm)?
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x + 1} \right)\left( {{x^2} + 2mx + 5} \right),\,\,\forall x \in \mathbb{R}.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số đã cho có đúng một điểm cực trị?
Trong không gian \[Oxyz,\] tọa độ điểm đối xứng của điểm \(M\left( {1\,;\,\,2\,;\,\,3} \right)\) qua mặt phẳng \(\left( {Oxz} \right)\) là
Phương trình \({\log _x}2 + {\log _2}x = \frac{5}{2}\) có hai nghiệm \({x_1},{x_2}\,\,\left( {{x_1} < {x_2}} \right).\) Khi đó, giá trị của \(x_1^2 + {x_2}\) bằng
Điền từ/ cụm từ thích hợp nhất để điền vào chỗ trống trong câu dưới đây:
Tố Hữu từng quan niệm “Thơ là chuyện ______. [...] Thơ là tiếng nói đồng ý và đồng tình, tiếng nói đồng chí.”
Cho cân bằng sau trong bình kín:
Biết khi hạ nhiệt độ của bình thì màu nâu đỏ nhạt dần. Phản ứng thuận có
Chọn từ/cụm từ thích hợp nhất để điền vào chỗ trống trong câu dưới đây:
Cuộc tấn công vào Quảng trường Tự do – quảng trường lớn nhất của Ukraine _______ là trung tâm đời sống công cộng của thành phố, ________ nhiều người Ukraine coi là bằng chứng rằng cuộc tấn công của Nga không chỉ nhằm vào các mục tiêu quân sự mà còn phá vỡ tinh thần của họ.
Trong không gian \[Oxyz,\] cho bốn điểm \(A\left( {1\,;\,\,1\,;\,\,0} \right),\,\,B\left( {3\,;\,\,1\,;\,\, - 2} \right)\), \[C\left( {0\,;\,\,2\,;\,\,0} \right)\] và \(D\left( { - 1\,;\,\,3\,;\,\,2} \right).\) Có bao nhiêu mặt phẳng chứa hai điểm \[B,\,\,C\] và cách đều hai điểm \[A,\,\,D?\]