1) Trong mặt phẳng tọa độ \[Oxy,\] cho hai đường thẳng \(\left( d \right):y = \left( {{m^2} - 3} \right)x + 3\) và \(\left( {d'} \right):y = 6x + m.\) Tìm tất cả các giá trị của \[m\] để hai đường thẳng trên song song với nhau.
1) Để \[\left( d \right)\,{\rm{//}}\,\left( {d'} \right)\] thì \(\left\{ \begin{array}{l}{m^2} - 3 = 6\\m \ne 3\end{array} \right.\) hay\(\left\{ \begin{array}{l}{m^2} = 9\\m \ne 3\end{array} \right.\) suy ra \(m = - 3.\)
Vậy với \(m = - 3\) thì hai đường thẳng đã cho song song với nhau.
2) Giải hệ phương trình \(\left\{ \begin{array}{l}x + 5y = - 7\\x - 4y = 11.\end{array} \right.\)
Trừ từng vế hai phương trình thứ nhất và thứ hai của hệ phương trình, ta được:
\(9y = - 18,\) suy ra \(y = - 2.\)
Thay \(y = - 2\) vào phương trình \(x + 5y = - 7,\) ta được:
\(x + 5 \cdot \left( { - 2} \right) = - 7,\) suy ra \(x = 3.\)
Vậy hệ phương trình có nghiệm duy nhất là \[\left( {x;{\rm{ }}y} \right) = \left( {3;\,\, - 2} \right).\]
Cho tam giác \[ABC\] cân tại \[A.\] Gọi \[O\] là trung điểm của cạnh \[BC.\] Đường tròn \[\left( O \right)\] tiếp xúc với \[AB\] tại \[E,\] tiếp xúc với \[AC\] tại \[F.\] Điểm \[H\] di động trên cung nhỏ của đường tròn \[\left( O \right);\] tiếp tuyến của đường tròn \[\left( O \right)\] tại \[H\] cắt \[AB,{\rm{ }}AC\] lần lượt tại \[I,{\rm{ }}K.\]
1) Chứng minh \[AEOF\] là tứ giác nội tiếp.
2) Chứng minh \(\widehat {IOK} = \widehat {ABC}\) và hai tam giác \[OIB,\,\,KOC\] đồng dạng.
Cho các số thực dương \[a,{\rm{ }}b,{\rm{ }}c\] thỏa mãn \[abc = 1.\] Tìm giá trị nhỏ nhất của biểu thức
\(P = \frac{{{a^4}\left( {{b^2} + {c^2}} \right)}}{{{b^3} + 2{c^3}}} + \frac{{{b^4}\left( {{c^2} + {a^2}} \right)}}{{{c^3} + 2{a^3}}} + \frac{{{c^4}\left( {{a^2} + {b^2}} \right)}}{{{a^3} + 2{b^3}}}.\)
Cho biểu thức \(P = \frac{{\sqrt x + 1}}{{\sqrt x - 1}} + \frac{{2\sqrt x + 1}}{{x - \sqrt x }} + \frac{1}{{\sqrt x }}\) với \(x > 0,x \ne 1.\)
1) Rút gọn biểu thức \(P.\)
1) Giải phương trình \({x^2} + 6x + 5 = 0.\)