Đáp án đúng là: A
Gọi \(I\left( {x;y;z} \right)\) là điểm thỏa mãn \(\overrightarrow {IA} = 2\overrightarrow {IB} \) \( \Leftrightarrow \left\{ \begin{array}{l}1 - x = 2\left( {2 - x} \right)\\2 - y = 2\left( { - 1 - y} \right)\\1 - z = 2\left( {3 - z} \right).\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = - 4\\z = 5\end{array} \right. \Rightarrow I\left( {3; - 4;5} \right)\).
Khi đó, ta có: \(M{A^2} - 2M{B^2} = {\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)^2} - 2{\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)^2} = - M{I^2} + 2\overrightarrow {MI} .\left( {\overrightarrow {IA} - 2\overrightarrow {IB} } \right) + I{A^2} - 2I{B^2}\)
\( = - M{I^2} + I{A^2} - 2I{B^2}\).
Để \[M{A^2}--2M{B^2}\] lớn nhất thì \( - M{I^2} + I{A^2} - 2I{B^2}\) lớn nhất \( \Leftrightarrow MI\) nhỏ nhất \( \Leftrightarrow M\) là hình chiếu của \(I\) trên mặt phẳng \(\left( {Oxy} \right)\).
Suy ra \(M\left( {3; - 4;0} \right)\).
Cho hàm số \[y = f\left( x \right)\] liên tục trên \(\mathbb{R}\) và có bảng xét dấu \(f'\left( x \right)\) dưới đây:
Số điểm cực trị của hàm số đã cho là:
Thể tích \(V\) (đơn vị: cm3) của 1 kg nước tại nhiệt độ \(T\left( {0^\circ C \le T \le 30^\circ C} \right)\) được tính bởi công thức sau: \(V(T) = 999,87 - 0,06426T + 0,0085043{T^2} - 0,0000679{T^3}.\) (Nguồn: J. Stewart, Calculus, Steventh Edition, Brooks/Cole, CENGAGE Learning 2012).
Hỏi thể tích \(V\left( T \right)\),\(\left( {0^\circ C \le T \le 30^\circ C} \right)\), giảm trong khoảng nhiệt độ gần với khoảng nào sau đây?
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\).
Mệnh đề nào sau đây là sai?
Trong không gian \[Oxyz\], cho hai vectơ \(\overrightarrow a = \left( { - 2;1;2} \right)\), \(\overrightarrow b = \left( {1;1; - 1} \right)\).
a) Xác định tọa độ của \(\overrightarrow u = \overrightarrow a - 2\overrightarrow b \). (0,25 điểm)
b) Tính độ dài của \(\overrightarrow u \). (0,25 điểm)
c) Tính \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\). (0,5 điểm)