Gọi số tiền cần tăng giá mỗi chiếc khăn là \(x\) (nghìn đồng, \(x > 0\)).
Vì cứ tăng giá thêm \(1\,\) nghìn đồng thì số khăn bán ra mỗi tháng sẽ ít hơn \(100\) chiếc nên tăng \(x\) nghìn đồng thì số khăn bán ra giảm \(100x\) chiếc.
Do đó, tổng số khăn bán ra mỗi tháng là: \(3\,000 - 100x\) (chiếc).
Lúc đầu bán với giá \(30\) nghìn đồng, mỗi chiếc khăn có lãi \(12\) nghìn đồng. Sau khi tăng giá, mỗi chiếc khăn thu được số lãi là: \(12 + x\) (nghìn đồng).
Khi đó, lợi nhuận một tháng thu được sau khi tăng giá là:
\(L\left( x \right) = \left( {3\,000 - 100x} \right)\left( {12 + x} \right)\)\( = - 100{x^2} + 1\,800x + 36\,000\) (nghìn đồng).
Xét hàm số \(L\left( x \right) = - 100{x^2} + 1\,800x + 36\,000\) với \(x \in \left( {0; + \infty } \right)\).
Ta có: \(L'\left( x \right) = - 200x + 1\,800\). Trên khoảng \(\left( {0; + \infty } \right)\), \(L'\left( x \right) = 0 \Leftrightarrow x = 9\).
Bảng biến thiên của hàm số \(L\left( x \right)\) trên khoảng \(\left( {0; + \infty } \right)\) như sau:
Từ bảng biến thiên ta thấy: trên khoảng \(\left( {0; + \infty } \right)\), hàm số \(L\left( x \right)\) đạt giá trị lớn nhất tại \(x = 9\).
Như vậy, để thu được lợi nhuận cao nhất thì cơ sở sản xuất phải tăng giá bán mỗi chiếc khăn lên \(9\) nghìn đồng, tức là giá bán mới của mỗi chiếc khăn là \[39\] nghìn đồng.
Đáp số: \(39\).
Người ta kéo vật nặng bằng một lực \(\overrightarrow F \) có cường độ \(200\) N như hình dưới đây.
Khi đó, ta biểu diễn được tọa độ của vectơ \(\overrightarrow F \) trong hệ tọa độ trên là \(\overrightarrow F = \left( {a\sqrt 2 ; - b\sqrt 2 ;c\sqrt 3 } \right)\) (với \(a,b,c \in \mathbb{Z}\)). Giá trị của biểu thức \(K = a - 2b + c\) bằng bao nhiêu?
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {m + 1} \right)x + 2\) có hai điểm cực trị?
Một chiếc đèn chùm treo có khối lượng \(m = 3\) kg được thiết kế với đĩa đèn được giữ bởi bốn đoạn xích \(SA,\,SB,\,SC,\,SD\) sao cho \(S.ABCD\) là hình chóp tứ giác đều có \(\widehat {ASC} = 60^\circ \) như hình dưới.
Độ lớn của lực căng cho mỗi sợi xích bằng bao nhiêu Newton (làm tròn kết quả đến hàng phần mười)? Biết rằng gia tốc rơi tự do có độ lớn 9,8 m/s2.
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ dưới đây.
Phát biểu nào sau đây là đúng?
Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \(\left[ { - 1;3} \right]\) và có đồ thị hàm số như hình vẽ dưới đây.
Giá trị lớn nhất của hàm số đã cho trên đoạn \(\left[ {0;\,2} \right]\) bằng bao nhiêu?
Đường cong trong hình dưới đây là đồ thị của hàm số nào trong các hàm số ở các phương án sau:
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng biến thiên như sau:
a) Hàm số đã cho nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {0;1} \right)\).
b) Hàm số đã cho có \(3\) điểm cực trị.
c) Trên đoạn \(\left[ { - 1;\,1} \right]\), giá trị lớn nhất của hàm số đã cho bằng \(3\).
d) Phương trình \(f\left( x \right) + 3 = 0\) có 4 nghiệm.
Cho hàm số \(y = \frac{{x - 3}}{{x + 1}}\).
a) Hàm số đã cho đồng biến trên \[\mathbb{R}\backslash \left\{ { - 1} \right\}\].
b) Hàm số đã cho đạt cực đại tại \(x = 4\).
c) Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x = - 1\), tiệm cận ngang là đường thẳng \(y = 1\).
d) Có \(2\,023\) giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 2\,024;2\,024} \right]\) để đường thẳng \(y = x + 2m\) cắt đồ thị hàm số đã cho tại hai điểm nằm về hai phía của trục tung.