IMG-LOGO

Câu hỏi:

27/10/2024 5

Trong không gian với hệ tọa độ \(Oxyz\), cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có đỉnh \(A\) trùng với gốc \(O\), các vectơ \(\overrightarrow {AB} ,\,\overrightarrow {AD} ,\,\overrightarrow {AA'} \) theo thứ tự cùng hướng với \(\overrightarrow i ,\,\overrightarrow j ,\,\overrightarrow k \)\(AB = 14,\,\,AD = 12,\,\,AA' = 18\). Gọi \(M\) là trung điểm của \(C'D'\), khi đó ta biểu diễn được tọa độ của vectơ \(\overrightarrow {AM} \)\(\left( {a;\,b;\,c} \right)\). Giá trị của biểu thức \(a + b - c\) bằng bao nhiêu?

Trả lời:

verified Giải bởi Vietjack

Theo bài ra ta có: \(\overrightarrow {AB}  = 14\overrightarrow i  + 0\overrightarrow j  + 0\overrightarrow k \); \(\overrightarrow {AD}  = 0\overrightarrow i  + 12\overrightarrow j  + 0\overrightarrow k \); \(\overrightarrow {AA'}  = 0\overrightarrow i  + 0\overrightarrow j  + 18\overrightarrow k \).

\(M\) là trung điểm của \(C'D'\) nên

 

\( = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'}  + \overrightarrow {AD}  + \overrightarrow {AA'} } \right)\) (quy tắc hình hộp và quy tắc hình bình hành)

\( = \frac{1}{2}\left( {\overrightarrow {AB}  + 2\overrightarrow {AD}  + 2\overrightarrow {AA'} } \right)\)

\( = \frac{1}{2}\left[ {14\overrightarrow i  + 0\overrightarrow j  + 0\overrightarrow k  + 2\left( {0\overrightarrow i  + 12\overrightarrow j  + 0\overrightarrow k } \right) + 2\left( {0\overrightarrow i  + 0\overrightarrow j  + 18\overrightarrow k } \right)} \right]\)

\( = 7\overrightarrow i  + 12\overrightarrow j  + 18\overrightarrow k \).

Suy ra \(\overrightarrow {AM}  = \left( {7;12;18} \right)\). Do đó, \(a = 7,b = 12,c = 18\).

Vậy \(a + b - c = 7 + 12 - 18 = 1\).

Đáp số: \(1\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một tàu kéo một xà lan trên biển di chuyển được 5 km với một lực kéo có cường độ \(3\,000\) N và có phương hợp với phương dịch chuyển một góc \(30^\circ \). Công thực hiện bởi lực kéo nói trên bằng bao nhiêu Jun (làm tròn kết quả đến hàng đơn vị)?

Xem đáp án » 27/10/2024 11

Câu 2:

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

 

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Xem đáp án » 27/10/2024 6

Câu 3:

Cho hàm số \[y = f\left( x \right)\]\(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 2\)\(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) =  - 2\). Phát biểu nào dưới đây là đúng?

Xem đáp án » 27/10/2024 6

Câu 4:

Trong không gian với hệ tọa độ \[Oxyz\], cho vectơ \(\overrightarrow u  =  - 3\overrightarrow i  + \overrightarrow j  - 8\overrightarrow k \). Tọa độ của vectơ \(\overrightarrow u \) là: 

Xem đáp án » 27/10/2024 6

Câu 5:

Cho hàm số \(y = \frac{{{x^2} + 3}}{{x - 1}}\). Khẳng định nào sau đây là đúng?

Xem đáp án » 27/10/2024 6

Câu 6:

Giá trị lớn nhất của hàm số \(y = 2\cos x - \frac{4}{3}{\cos ^3}x\) trên đoạn \(\left[ {0;\,\pi } \right]\) bằng

Xem đáp án » 27/10/2024 6

Câu 7:

Tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} - 3x + 6}}{{x + 2}}\) là đường thẳng:

Xem đáp án » 27/10/2024 6

Câu 8:

Giá trị cực tiểu của hàm số đã cho bằng 

Xem đáp án » 27/10/2024 5

Câu 9:

Cho hàm số \[y = f\left( x \right)\] xác định và liên tục trên \(\mathbb{R}\) có đồ thị hàm số như hình vẽ dưới đây.

 

Giá trị nhỏ nhất \(m\) và giá trị lớn nhất \(M\) của hàm số đã cho trên đoạn \(\left[ { - 2;2} \right]\) lần lượt là:

Xem đáp án » 27/10/2024 5

Câu 10:

Cho tứ diện \(ABCD\). Có bao nhiêu vectơ khác vectơ \(\overrightarrow 0 \) mà mỗi vectơ có điểm đầu và điểm cuối là hai đỉnh của tứ diện \(ABCD\)?

Xem đáp án » 27/10/2024 5

Câu 11:

Trong không gian với hệ tọa độ \[Oxyz\], cho điểm \(M\left( { - 2; - 5;7} \right)\). Tọa độ của vectơ \(\overrightarrow {OM} \) là:

Xem đáp án » 27/10/2024 5

Câu 12:

Cho hàm số \(y = \frac{{ax - b}}{{x - 1}}\) có đồ thị như hình vẽ dưới đây.

Khẳng định nào sau đây là đúng?

Xem đáp án » 27/10/2024 5

Câu 13:

 Cho hàm số \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\).

a) Hàm số đã cho đồng biến trên \[\left( { - \infty ; - 1} \right)\]\(\left( {3; + \infty } \right)\).

b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng \( - 4\)

c) Đường tiệm cận xiên của đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\).

d) Phương trình tiếp tuyến của đồ thị hàm số đã cho vuông góc với đường thẳng \(x - 3y - 6 = 0\) đi qua điểm \(B\left( { - \frac{3}{2};\frac{3}{2}} \right)\).

Xem đáp án » 27/10/2024 5

Câu 14:

Trong không gian với hệ tọa độ \(Oxyz\), cho hình bình hành \(ABCD\) có ba đỉnh\(A\left( {1;\,3 & ;\, - 1} \right)\), \(B\left( {3;0;\,3} \right)\)\(C\left( {2;\,3;\,6} \right)\).

a) Tọa độ của vectơ \(\overrightarrow {AB} \)\(\left( {2;3;4} \right)\).

b) Gọi tọa độ của điểm \(D\)\(\left( {{x_D};\,{y_D};{z_D}} \right)\), ta có tọa độ của vectơ \(\overrightarrow {CD} \) là:

\(\left( {{x_D} - 2;{y_D} - 3;{z_D} - 6} \right)\).

c) Tọa độ của điểm \(D\)\(\left( {0;6;2} \right)\).

d) Tọa độ tâm \(O\) của hình bình hành \(ABCD\)\(\left( {\frac{1}{2};\,0;\,\frac{7}{2}} \right)\).

Xem đáp án » 27/10/2024 5

Câu 15:

Cho hàm số \(y = {x^3} - 3\left( {m + 1} \right){x^2} + 3\left( {7m - 3} \right)x\). Gọi \(S\) là tập các giá trị nguyên của tham số \(m\) để hàm số không có cực trị. Tập hợp \(S\) có bao nhiêu phần tử?

Xem đáp án » 27/10/2024 5